12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559 |
- /*
- * jdhuff.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * Modified 2006-2019 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains Huffman entropy decoding routines.
- * Both sequential and progressive modes are supported in this single module.
- *
- * Much of the complexity here has to do with supporting input suspension.
- * If the data source module demands suspension, we want to be able to back
- * up to the start of the current MCU. To do this, we copy state variables
- * into local working storage, and update them back to the permanent
- * storage only upon successful completion of an MCU.
- */
- #define JPEG_INTERNALS
- #include "jinclude.h"
- #include "jpeglib.h"
- /* Derived data constructed for each Huffman table */
- #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
- typedef struct {
- /* Basic tables: (element [0] of each array is unused) */
- INT32 maxcode[18]; /* largest code of length k (-1 if none) */
- /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
- INT32 valoffset[17]; /* huffval[] offset for codes of length k */
- /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
- * the smallest code of length k; so given a code of length k, the
- * corresponding symbol is huffval[code + valoffset[k]]
- */
- /* Link to public Huffman table (needed only in jpeg_huff_decode) */
- JHUFF_TBL *pub;
- /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
- * the input data stream. If the next Huffman code is no more
- * than HUFF_LOOKAHEAD bits long, we can obtain its length and
- * the corresponding symbol directly from these tables.
- */
- int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
- UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
- } d_derived_tbl;
- /*
- * Fetching the next N bits from the input stream is a time-critical operation
- * for the Huffman decoders. We implement it with a combination of inline
- * macros and out-of-line subroutines. Note that N (the number of bits
- * demanded at one time) never exceeds 15 for JPEG use.
- *
- * We read source bytes into get_buffer and dole out bits as needed.
- * If get_buffer already contains enough bits, they are fetched in-line
- * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
- * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
- * as full as possible (not just to the number of bits needed; this
- * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
- * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
- * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
- * at least the requested number of bits --- dummy zeroes are inserted if
- * necessary.
- */
- typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
- #define BIT_BUF_SIZE 32 /* size of buffer in bits */
- /* If long is > 32 bits on your machine, and shifting/masking longs is
- * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
- * appropriately should be a win. Unfortunately we can't define the size
- * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
- * because not all machines measure sizeof in 8-bit bytes.
- */
- typedef struct { /* Bitreading state saved across MCUs */
- bit_buf_type get_buffer; /* current bit-extraction buffer */
- int bits_left; /* # of unused bits in it */
- } bitread_perm_state;
- typedef struct { /* Bitreading working state within an MCU */
- /* Current data source location */
- /* We need a copy, rather than munging the original, in case of suspension */
- const JOCTET * next_input_byte; /* => next byte to read from source */
- size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
- /* Bit input buffer --- note these values are kept in register variables,
- * not in this struct, inside the inner loops.
- */
- bit_buf_type get_buffer; /* current bit-extraction buffer */
- int bits_left; /* # of unused bits in it */
- /* Pointer needed by jpeg_fill_bit_buffer. */
- j_decompress_ptr cinfo; /* back link to decompress master record */
- } bitread_working_state;
- /* Macros to declare and load/save bitread local variables. */
- #define BITREAD_STATE_VARS \
- register bit_buf_type get_buffer; \
- register int bits_left; \
- bitread_working_state br_state
- #define BITREAD_LOAD_STATE(cinfop,permstate) \
- br_state.cinfo = cinfop; \
- br_state.next_input_byte = cinfop->src->next_input_byte; \
- br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
- get_buffer = permstate.get_buffer; \
- bits_left = permstate.bits_left;
- #define BITREAD_SAVE_STATE(cinfop,permstate) \
- cinfop->src->next_input_byte = br_state.next_input_byte; \
- cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
- permstate.get_buffer = get_buffer; \
- permstate.bits_left = bits_left
- /*
- * These macros provide the in-line portion of bit fetching.
- * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
- * before using GET_BITS, PEEK_BITS, or DROP_BITS.
- * The variables get_buffer and bits_left are assumed to be locals,
- * but the state struct might not be (jpeg_huff_decode needs this).
- * CHECK_BIT_BUFFER(state,n,action);
- * Ensure there are N bits in get_buffer; if suspend, take action.
- * val = GET_BITS(n);
- * Fetch next N bits.
- * val = PEEK_BITS(n);
- * Fetch next N bits without removing them from the buffer.
- * DROP_BITS(n);
- * Discard next N bits.
- * The value N should be a simple variable, not an expression, because it
- * is evaluated multiple times.
- */
- #define CHECK_BIT_BUFFER(state,nbits,action) \
- { if (bits_left < (nbits)) { \
- if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
- { action; } \
- get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
- #define GET_BITS(nbits) \
- (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
- #define PEEK_BITS(nbits) \
- (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits))
- #define DROP_BITS(nbits) \
- (bits_left -= (nbits))
- /*
- * Code for extracting next Huffman-coded symbol from input bit stream.
- * Again, this is time-critical and we make the main paths be macros.
- *
- * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
- * without looping. Usually, more than 95% of the Huffman codes will be 8
- * or fewer bits long. The few overlength codes are handled with a loop,
- * which need not be inline code.
- *
- * Notes about the HUFF_DECODE macro:
- * 1. Near the end of the data segment, we may fail to get enough bits
- * for a lookahead. In that case, we do it the hard way.
- * 2. If the lookahead table contains no entry, the next code must be
- * more than HUFF_LOOKAHEAD bits long.
- * 3. jpeg_huff_decode returns -1 if forced to suspend.
- */
- #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
- { register int nb, look; \
- if (bits_left < HUFF_LOOKAHEAD) { \
- if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
- get_buffer = state.get_buffer; bits_left = state.bits_left; \
- if (bits_left < HUFF_LOOKAHEAD) { \
- nb = 1; goto slowlabel; \
- } \
- } \
- look = PEEK_BITS(HUFF_LOOKAHEAD); \
- if ((nb = htbl->look_nbits[look]) != 0) { \
- DROP_BITS(nb); \
- result = htbl->look_sym[look]; \
- } else { \
- nb = HUFF_LOOKAHEAD+1; \
- slowlabel: \
- if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
- { failaction; } \
- get_buffer = state.get_buffer; bits_left = state.bits_left; \
- } \
- }
- /*
- * Expanded entropy decoder object for Huffman decoding.
- *
- * The savable_state subrecord contains fields that change within an MCU,
- * but must not be updated permanently until we complete the MCU.
- */
- typedef struct {
- unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
- } savable_state;
- /* This macro is to work around compilers with missing or broken
- * structure assignment. You'll need to fix this code if you have
- * such a compiler and you change MAX_COMPS_IN_SCAN.
- */
- #ifndef NO_STRUCT_ASSIGN
- #define ASSIGN_STATE(dest,src) ((dest) = (src))
- #else
- #if MAX_COMPS_IN_SCAN == 4
- #define ASSIGN_STATE(dest,src) \
- ((dest).EOBRUN = (src).EOBRUN, \
- (dest).last_dc_val[0] = (src).last_dc_val[0], \
- (dest).last_dc_val[1] = (src).last_dc_val[1], \
- (dest).last_dc_val[2] = (src).last_dc_val[2], \
- (dest).last_dc_val[3] = (src).last_dc_val[3])
- #endif
- #endif
- typedef struct {
- struct jpeg_entropy_decoder pub; /* public fields */
- /* These fields are loaded into local variables at start of each MCU.
- * In case of suspension, we exit WITHOUT updating them.
- */
- bitread_perm_state bitstate; /* Bit buffer at start of MCU */
- savable_state saved; /* Other state at start of MCU */
- /* These fields are NOT loaded into local working state. */
- boolean insufficient_data; /* set TRUE after emitting warning */
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
- /* Following two fields used only in progressive mode */
- /* Pointers to derived tables (these workspaces have image lifespan) */
- d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
- d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
- /* Following fields used only in sequential mode */
- /* Pointers to derived tables (these workspaces have image lifespan) */
- d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
- d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
- /* Precalculated info set up by start_pass for use in decode_mcu: */
- /* Pointers to derived tables to be used for each block within an MCU */
- d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
- d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
- /* Whether we care about the DC and AC coefficient values for each block */
- int coef_limit[D_MAX_BLOCKS_IN_MCU];
- } huff_entropy_decoder;
- typedef huff_entropy_decoder * huff_entropy_ptr;
- static const int jpeg_zigzag_order[8][8] = {
- { 0, 1, 5, 6, 14, 15, 27, 28 },
- { 2, 4, 7, 13, 16, 26, 29, 42 },
- { 3, 8, 12, 17, 25, 30, 41, 43 },
- { 9, 11, 18, 24, 31, 40, 44, 53 },
- { 10, 19, 23, 32, 39, 45, 52, 54 },
- { 20, 22, 33, 38, 46, 51, 55, 60 },
- { 21, 34, 37, 47, 50, 56, 59, 61 },
- { 35, 36, 48, 49, 57, 58, 62, 63 }
- };
- static const int jpeg_zigzag_order7[7][7] = {
- { 0, 1, 5, 6, 14, 15, 27 },
- { 2, 4, 7, 13, 16, 26, 28 },
- { 3, 8, 12, 17, 25, 29, 38 },
- { 9, 11, 18, 24, 30, 37, 39 },
- { 10, 19, 23, 31, 36, 40, 45 },
- { 20, 22, 32, 35, 41, 44, 46 },
- { 21, 33, 34, 42, 43, 47, 48 }
- };
- static const int jpeg_zigzag_order6[6][6] = {
- { 0, 1, 5, 6, 14, 15 },
- { 2, 4, 7, 13, 16, 25 },
- { 3, 8, 12, 17, 24, 26 },
- { 9, 11, 18, 23, 27, 32 },
- { 10, 19, 22, 28, 31, 33 },
- { 20, 21, 29, 30, 34, 35 }
- };
- static const int jpeg_zigzag_order5[5][5] = {
- { 0, 1, 5, 6, 14 },
- { 2, 4, 7, 13, 15 },
- { 3, 8, 12, 16, 21 },
- { 9, 11, 17, 20, 22 },
- { 10, 18, 19, 23, 24 }
- };
- static const int jpeg_zigzag_order4[4][4] = {
- { 0, 1, 5, 6 },
- { 2, 4, 7, 12 },
- { 3, 8, 11, 13 },
- { 9, 10, 14, 15 }
- };
- static const int jpeg_zigzag_order3[3][3] = {
- { 0, 1, 5 },
- { 2, 4, 6 },
- { 3, 7, 8 }
- };
- static const int jpeg_zigzag_order2[2][2] = {
- { 0, 1 },
- { 2, 3 }
- };
- /*
- * Compute the derived values for a Huffman table.
- * This routine also performs some validation checks on the table.
- */
- LOCAL(void)
- jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
- d_derived_tbl ** pdtbl)
- {
- JHUFF_TBL *htbl;
- d_derived_tbl *dtbl;
- int p, i, l, si, numsymbols;
- int lookbits, ctr;
- char huffsize[257];
- unsigned int huffcode[257];
- unsigned int code;
- /* Note that huffsize[] and huffcode[] are filled in code-length order,
- * paralleling the order of the symbols themselves in htbl->huffval[].
- */
- /* Find the input Huffman table */
- if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
- htbl =
- isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
- if (htbl == NULL)
- htbl = jpeg_std_huff_table((j_common_ptr) cinfo, isDC, tblno);
- /* Allocate a workspace if we haven't already done so. */
- if (*pdtbl == NULL)
- *pdtbl = (d_derived_tbl *) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(d_derived_tbl));
- dtbl = *pdtbl;
- dtbl->pub = htbl; /* fill in back link */
-
- /* Figure C.1: make table of Huffman code length for each symbol */
- p = 0;
- for (l = 1; l <= 16; l++) {
- i = (int) htbl->bits[l];
- if (i < 0 || p + i > 256) /* protect against table overrun */
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- while (i--)
- huffsize[p++] = (char) l;
- }
- huffsize[p] = 0;
- numsymbols = p;
-
- /* Figure C.2: generate the codes themselves */
- /* We also validate that the counts represent a legal Huffman code tree. */
-
- code = 0;
- si = huffsize[0];
- p = 0;
- while (huffsize[p]) {
- while (((int) huffsize[p]) == si) {
- huffcode[p++] = code;
- code++;
- }
- /* code is now 1 more than the last code used for codelength si; but
- * it must still fit in si bits, since no code is allowed to be all ones.
- */
- if (((INT32) code) >= (((INT32) 1) << si))
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- code <<= 1;
- si++;
- }
- /* Figure F.15: generate decoding tables for bit-sequential decoding */
- p = 0;
- for (l = 1; l <= 16; l++) {
- if (htbl->bits[l]) {
- /* valoffset[l] = huffval[] index of 1st symbol of code length l,
- * minus the minimum code of length l
- */
- dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
- p += htbl->bits[l];
- dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
- } else {
- dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
- }
- }
- dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
- /* Compute lookahead tables to speed up decoding.
- * First we set all the table entries to 0, indicating "too long";
- * then we iterate through the Huffman codes that are short enough and
- * fill in all the entries that correspond to bit sequences starting
- * with that code.
- */
- MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
- p = 0;
- for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
- for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
- /* l = current code's length, p = its index in huffcode[] & huffval[]. */
- /* Generate left-justified code followed by all possible bit sequences */
- lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
- for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
- dtbl->look_nbits[lookbits] = l;
- dtbl->look_sym[lookbits] = htbl->huffval[p];
- lookbits++;
- }
- }
- }
- /* Validate symbols as being reasonable.
- * For AC tables, we make no check, but accept all byte values 0..255.
- * For DC tables, we require the symbols to be in range 0..15.
- * (Tighter bounds could be applied depending on the data depth and mode,
- * but this is sufficient to ensure safe decoding.)
- */
- if (isDC) {
- for (i = 0; i < numsymbols; i++) {
- int sym = htbl->huffval[i];
- if (sym < 0 || sym > 15)
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- }
- }
- }
- /*
- * Out-of-line code for bit fetching.
- * Note: current values of get_buffer and bits_left are passed as parameters,
- * but are returned in the corresponding fields of the state struct.
- *
- * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
- * of get_buffer to be used. (On machines with wider words, an even larger
- * buffer could be used.) However, on some machines 32-bit shifts are
- * quite slow and take time proportional to the number of places shifted.
- * (This is true with most PC compilers, for instance.) In this case it may
- * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
- * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
- */
- #ifdef SLOW_SHIFT_32
- #define MIN_GET_BITS 15 /* minimum allowable value */
- #else
- #define MIN_GET_BITS (BIT_BUF_SIZE-7)
- #endif
- LOCAL(boolean)
- jpeg_fill_bit_buffer (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- int nbits)
- /* Load up the bit buffer to a depth of at least nbits */
- {
- /* Copy heavily used state fields into locals (hopefully registers) */
- register const JOCTET * next_input_byte = state->next_input_byte;
- register size_t bytes_in_buffer = state->bytes_in_buffer;
- j_decompress_ptr cinfo = state->cinfo;
- /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
- /* (It is assumed that no request will be for more than that many bits.) */
- /* We fail to do so only if we hit a marker or are forced to suspend. */
- if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
- while (bits_left < MIN_GET_BITS) {
- register int c;
- /* Attempt to read a byte */
- if (bytes_in_buffer == 0) {
- if (! (*cinfo->src->fill_input_buffer) (cinfo))
- return FALSE;
- next_input_byte = cinfo->src->next_input_byte;
- bytes_in_buffer = cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
- /* If it's 0xFF, check and discard stuffed zero byte */
- if (c == 0xFF) {
- /* Loop here to discard any padding FF's on terminating marker,
- * so that we can save a valid unread_marker value. NOTE: we will
- * accept multiple FF's followed by a 0 as meaning a single FF data
- * byte. This data pattern is not valid according to the standard.
- */
- do {
- if (bytes_in_buffer == 0) {
- if (! (*cinfo->src->fill_input_buffer) (cinfo))
- return FALSE;
- next_input_byte = cinfo->src->next_input_byte;
- bytes_in_buffer = cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
- } while (c == 0xFF);
- if (c == 0) {
- /* Found FF/00, which represents an FF data byte */
- c = 0xFF;
- } else {
- /* Oops, it's actually a marker indicating end of compressed data.
- * Save the marker code for later use.
- * Fine point: it might appear that we should save the marker into
- * bitread working state, not straight into permanent state. But
- * once we have hit a marker, we cannot need to suspend within the
- * current MCU, because we will read no more bytes from the data
- * source. So it is OK to update permanent state right away.
- */
- cinfo->unread_marker = c;
- /* See if we need to insert some fake zero bits. */
- goto no_more_bytes;
- }
- }
- /* OK, load c into get_buffer */
- get_buffer = (get_buffer << 8) | c;
- bits_left += 8;
- } /* end while */
- } else {
- no_more_bytes:
- /* We get here if we've read the marker that terminates the compressed
- * data segment. There should be enough bits in the buffer register
- * to satisfy the request; if so, no problem.
- */
- if (nbits > bits_left) {
- /* Uh-oh. Report corrupted data to user and stuff zeroes into
- * the data stream, so that we can produce some kind of image.
- * We use a nonvolatile flag to ensure that only one warning message
- * appears per data segment.
- */
- if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
- WARNMS(cinfo, JWRN_HIT_MARKER);
- ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
- }
- /* Fill the buffer with zero bits */
- get_buffer <<= MIN_GET_BITS - bits_left;
- bits_left = MIN_GET_BITS;
- }
- }
- /* Unload the local registers */
- state->next_input_byte = next_input_byte;
- state->bytes_in_buffer = bytes_in_buffer;
- state->get_buffer = get_buffer;
- state->bits_left = bits_left;
- return TRUE;
- }
- /*
- * Figure F.12: extend sign bit.
- * On some machines, a shift and sub will be faster than a table lookup.
- */
- #ifdef AVOID_TABLES
- #define BIT_MASK(nbits) ((1<<(nbits))-1)
- #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
- #else
- #define BIT_MASK(nbits) bmask[nbits]
- #define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
- static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */
- { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
- 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
- #endif /* AVOID_TABLES */
- /*
- * Out-of-line code for Huffman code decoding.
- */
- LOCAL(int)
- jpeg_huff_decode (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- d_derived_tbl * htbl, int min_bits)
- {
- register int l = min_bits;
- register INT32 code;
- /* HUFF_DECODE has determined that the code is at least min_bits */
- /* bits long, so fetch that many bits in one swoop. */
- CHECK_BIT_BUFFER(*state, l, return -1);
- code = GET_BITS(l);
- /* Collect the rest of the Huffman code one bit at a time. */
- /* This is per Figure F.16 in the JPEG spec. */
- while (code > htbl->maxcode[l]) {
- code <<= 1;
- CHECK_BIT_BUFFER(*state, 1, return -1);
- code |= GET_BITS(1);
- l++;
- }
- /* Unload the local registers */
- state->get_buffer = get_buffer;
- state->bits_left = bits_left;
- /* With garbage input we may reach the sentinel value l = 17. */
- if (l > 16) {
- WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
- return 0; /* fake a zero as the safest result */
- }
- return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
- }
- /*
- * Finish up at the end of a Huffman-compressed scan.
- */
- METHODDEF(void)
- finish_pass_huff (j_decompress_ptr cinfo)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- /* Throw away any unused bits remaining in bit buffer; */
- /* include any full bytes in next_marker's count of discarded bytes */
- cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
- entropy->bitstate.bits_left = 0;
- }
- /*
- * Check for a restart marker & resynchronize decoder.
- * Returns FALSE if must suspend.
- */
- LOCAL(boolean)
- process_restart (j_decompress_ptr cinfo)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci;
- finish_pass_huff(cinfo);
- /* Advance past the RSTn marker */
- if (! (*cinfo->marker->read_restart_marker) (cinfo))
- return FALSE;
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++)
- entropy->saved.last_dc_val[ci] = 0;
- /* Re-init EOB run count, too */
- entropy->saved.EOBRUN = 0;
- /* Reset restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
- /* Reset out-of-data flag, unless read_restart_marker left us smack up
- * against a marker. In that case we will end up treating the next data
- * segment as empty, and we can avoid producing bogus output pixels by
- * leaving the flag set.
- */
- if (cinfo->unread_marker == 0)
- entropy->insufficient_data = FALSE;
- return TRUE;
- }
- /*
- * Huffman MCU decoding.
- * Each of these routines decodes and returns one MCU's worth of
- * Huffman-compressed coefficients.
- * The coefficients are reordered from zigzag order into natural array order,
- * but are not dequantized.
- *
- * The i'th block of the MCU is stored into the block pointed to by
- * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
- * (Wholesale zeroing is usually a little faster than retail...)
- *
- * We return FALSE if data source requested suspension. In that case no
- * changes have been made to permanent state. (Exception: some output
- * coefficients may already have been assigned. This is harmless for
- * spectral selection, since we'll just re-assign them on the next call.
- * Successive approximation AC refinement has to be more careful, however.)
- */
- /*
- * MCU decoding for DC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
- METHODDEF(boolean)
- decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int Al = cinfo->Al;
- register int s, r;
- int blkn, ci;
- JBLOCKROW block;
- BITREAD_STATE_VARS;
- savable_state state;
- d_derived_tbl * tbl;
- jpeg_component_info * compptr;
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->insufficient_data) {
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
- ASSIGN_STATE(state, entropy->saved);
- /* Outer loop handles each block in the MCU */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- tbl = entropy->derived_tbls[compptr->dc_tbl_no];
- /* Decode a single block's worth of coefficients */
- /* Section F.2.2.1: decode the DC coefficient difference */
- HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
- if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- }
- /* Convert DC difference to actual value, update last_dc_val */
- s += state.last_dc_val[ci];
- state.last_dc_val[ci] = s;
- /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
- (*block)[0] = (JCOEF) (s << Al);
- }
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
- ASSIGN_STATE(entropy->saved, state);
- }
- /* Account for restart interval if using restarts */
- if (cinfo->restart_interval)
- entropy->restarts_to_go--;
- return TRUE;
- }
- /*
- * MCU decoding for AC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
- METHODDEF(boolean)
- decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- register int s, k, r;
- unsigned int EOBRUN;
- int Se, Al;
- const int * natural_order;
- JBLOCKROW block;
- BITREAD_STATE_VARS;
- d_derived_tbl * tbl;
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->insufficient_data) {
- /* Load up working state.
- * We can avoid loading/saving bitread state if in an EOB run.
- */
- EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
- /* There is always only one block per MCU */
- if (EOBRUN) /* if it's a band of zeroes... */
- EOBRUN--; /* ...process it now (we do nothing) */
- else {
- BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
- Se = cinfo->Se;
- Al = cinfo->Al;
- natural_order = cinfo->natural_order;
- block = MCU_data[0];
- tbl = entropy->ac_derived_tbl;
- for (k = cinfo->Ss; k <= Se; k++) {
- HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
- r = s >> 4;
- s &= 15;
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Scale and output coefficient in natural (dezigzagged) order */
- (*block)[natural_order[k]] = (JCOEF) (s << Al);
- } else {
- if (r != 15) { /* EOBr, run length is 2^r + appended bits */
- if (r) { /* EOBr, r > 0 */
- EOBRUN = 1 << r;
- CHECK_BIT_BUFFER(br_state, r, return FALSE);
- r = GET_BITS(r);
- EOBRUN += r;
- EOBRUN--; /* this band is processed at this moment */
- }
- break; /* force end-of-band */
- }
- k += 15; /* ZRL: skip 15 zeroes in band */
- }
- }
- BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
- }
- /* Completed MCU, so update state */
- entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
- }
- /* Account for restart interval if using restarts */
- if (cinfo->restart_interval)
- entropy->restarts_to_go--;
- return TRUE;
- }
- /*
- * MCU decoding for DC successive approximation refinement scan.
- * Note: we assume such scans can be multi-component,
- * although the spec is not very clear on the point.
- */
- METHODDEF(boolean)
- decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- JCOEF p1;
- int blkn;
- BITREAD_STATE_VARS;
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
- /* Not worth the cycles to check insufficient_data here,
- * since we will not change the data anyway if we read zeroes.
- */
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
- p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
- /* Outer loop handles each block in the MCU */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- /* Encoded data is simply the next bit of the two's-complement DC value */
- CHECK_BIT_BUFFER(br_state, 1, return FALSE);
- if (GET_BITS(1))
- MCU_data[blkn][0][0] |= p1;
- /* Note: since we use |=, repeating the assignment later is safe */
- }
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
- /* Account for restart interval if using restarts */
- if (cinfo->restart_interval)
- entropy->restarts_to_go--;
- return TRUE;
- }
- /*
- * MCU decoding for AC successive approximation refinement scan.
- */
- METHODDEF(boolean)
- decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- register int s, k, r;
- unsigned int EOBRUN;
- int Se;
- JCOEF p1, m1;
- const int * natural_order;
- JBLOCKROW block;
- JCOEFPTR thiscoef;
- BITREAD_STATE_VARS;
- d_derived_tbl * tbl;
- int num_newnz;
- int newnz_pos[DCTSIZE2];
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
- /* If we've run out of data, don't modify the MCU.
- */
- if (! entropy->insufficient_data) {
- Se = cinfo->Se;
- p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
- m1 = -p1; /* -1 in the bit position being coded */
- natural_order = cinfo->natural_order;
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
- EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
- /* There is always only one block per MCU */
- block = MCU_data[0];
- tbl = entropy->ac_derived_tbl;
- /* If we are forced to suspend, we must undo the assignments to any newly
- * nonzero coefficients in the block, because otherwise we'd get confused
- * next time about which coefficients were already nonzero.
- * But we need not undo addition of bits to already-nonzero coefficients;
- * instead, we can test the current bit to see if we already did it.
- */
- num_newnz = 0;
- /* initialize coefficient loop counter to start of band */
- k = cinfo->Ss;
- if (EOBRUN == 0) {
- do {
- HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
- r = s >> 4;
- s &= 15;
- if (s) {
- if (s != 1) /* size of new coef should always be 1 */
- WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
- CHECK_BIT_BUFFER(br_state, 1, goto undoit);
- if (GET_BITS(1))
- s = p1; /* newly nonzero coef is positive */
- else
- s = m1; /* newly nonzero coef is negative */
- } else {
- if (r != 15) {
- EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
- if (r) {
- CHECK_BIT_BUFFER(br_state, r, goto undoit);
- r = GET_BITS(r);
- EOBRUN += r;
- }
- break; /* rest of block is handled by EOB logic */
- }
- /* note s = 0 for processing ZRL */
- }
- /* Advance over already-nonzero coefs and r still-zero coefs,
- * appending correction bits to the nonzeroes. A correction bit is 1
- * if the absolute value of the coefficient must be increased.
- */
- do {
- thiscoef = *block + natural_order[k];
- if (*thiscoef) {
- CHECK_BIT_BUFFER(br_state, 1, goto undoit);
- if (GET_BITS(1)) {
- if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
- if (*thiscoef >= 0)
- *thiscoef += p1;
- else
- *thiscoef += m1;
- }
- }
- } else {
- if (--r < 0)
- break; /* reached target zero coefficient */
- }
- k++;
- } while (k <= Se);
- if (s) {
- int pos = natural_order[k];
- /* Output newly nonzero coefficient */
- (*block)[pos] = (JCOEF) s;
- /* Remember its position in case we have to suspend */
- newnz_pos[num_newnz++] = pos;
- }
- k++;
- } while (k <= Se);
- }
- if (EOBRUN) {
- /* Scan any remaining coefficient positions after the end-of-band
- * (the last newly nonzero coefficient, if any). Append a correction
- * bit to each already-nonzero coefficient. A correction bit is 1
- * if the absolute value of the coefficient must be increased.
- */
- do {
- thiscoef = *block + natural_order[k];
- if (*thiscoef) {
- CHECK_BIT_BUFFER(br_state, 1, goto undoit);
- if (GET_BITS(1)) {
- if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
- if (*thiscoef >= 0)
- *thiscoef += p1;
- else
- *thiscoef += m1;
- }
- }
- }
- k++;
- } while (k <= Se);
- /* Count one block completed in EOB run */
- EOBRUN--;
- }
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
- entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
- }
- /* Account for restart interval if using restarts */
- if (cinfo->restart_interval)
- entropy->restarts_to_go--;
- return TRUE;
- undoit:
- /* Re-zero any output coefficients that we made newly nonzero */
- while (num_newnz)
- (*block)[newnz_pos[--num_newnz]] = 0;
- return FALSE;
- }
- /*
- * Decode one MCU's worth of Huffman-compressed coefficients,
- * partial blocks.
- */
- METHODDEF(boolean)
- decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- const int * natural_order;
- int Se, blkn;
- BITREAD_STATE_VARS;
- savable_state state;
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->insufficient_data) {
- natural_order = cinfo->natural_order;
- Se = cinfo->lim_Se;
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
- ASSIGN_STATE(state, entropy->saved);
- /* Outer loop handles each block in the MCU */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- JBLOCKROW block = MCU_data[blkn];
- d_derived_tbl * htbl;
- register int s, k, r;
- int coef_limit, ci;
- /* Decode a single block's worth of coefficients */
- /* Section F.2.2.1: decode the DC coefficient difference */
- htbl = entropy->dc_cur_tbls[blkn];
- HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
- htbl = entropy->ac_cur_tbls[blkn];
- k = 1;
- coef_limit = entropy->coef_limit[blkn];
- if (coef_limit) {
- /* Convert DC difference to actual value, update last_dc_val */
- if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- }
- ci = cinfo->MCU_membership[blkn];
- s += state.last_dc_val[ci];
- state.last_dc_val[ci] = s;
- /* Output the DC coefficient */
- (*block)[0] = (JCOEF) s;
- /* Section F.2.2.2: decode the AC coefficients */
- /* Since zeroes are skipped, output area must be cleared beforehand */
- for (; k < coef_limit; k++) {
- HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
- r = s >> 4;
- s &= 15;
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Output coefficient in natural (dezigzagged) order.
- * Note: the extra entries in natural_order[] will save us
- * if k > Se, which could happen if the data is corrupted.
- */
- (*block)[natural_order[k]] = (JCOEF) s;
- } else {
- if (r != 15)
- goto EndOfBlock;
- k += 15;
- }
- }
- } else {
- if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
- }
- }
- /* Section F.2.2.2: decode the AC coefficients */
- /* In this path we just discard the values */
- for (; k <= Se; k++) {
- HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
- r = s >> 4;
- s &= 15;
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
- EndOfBlock: ;
- }
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
- ASSIGN_STATE(entropy->saved, state);
- }
- /* Account for restart interval if using restarts */
- if (cinfo->restart_interval)
- entropy->restarts_to_go--;
- return TRUE;
- }
- /*
- * Decode one MCU's worth of Huffman-compressed coefficients,
- * full-size blocks.
- */
- METHODDEF(boolean)
- decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int blkn;
- BITREAD_STATE_VARS;
- savable_state state;
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->insufficient_data) {
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
- ASSIGN_STATE(state, entropy->saved);
- /* Outer loop handles each block in the MCU */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- JBLOCKROW block = MCU_data[blkn];
- d_derived_tbl * htbl;
- register int s, k, r;
- int coef_limit, ci;
- /* Decode a single block's worth of coefficients */
- /* Section F.2.2.1: decode the DC coefficient difference */
- htbl = entropy->dc_cur_tbls[blkn];
- HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
- htbl = entropy->ac_cur_tbls[blkn];
- k = 1;
- coef_limit = entropy->coef_limit[blkn];
- if (coef_limit) {
- /* Convert DC difference to actual value, update last_dc_val */
- if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- }
- ci = cinfo->MCU_membership[blkn];
- s += state.last_dc_val[ci];
- state.last_dc_val[ci] = s;
- /* Output the DC coefficient */
- (*block)[0] = (JCOEF) s;
- /* Section F.2.2.2: decode the AC coefficients */
- /* Since zeroes are skipped, output area must be cleared beforehand */
- for (; k < coef_limit; k++) {
- HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
- r = s >> 4;
- s &= 15;
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Output coefficient in natural (dezigzagged) order.
- * Note: the extra entries in jpeg_natural_order[] will save us
- * if k >= DCTSIZE2, which could happen if the data is corrupted.
- */
- (*block)[jpeg_natural_order[k]] = (JCOEF) s;
- } else {
- if (r != 15)
- goto EndOfBlock;
- k += 15;
- }
- }
- } else {
- if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
- }
- }
- /* Section F.2.2.2: decode the AC coefficients */
- /* In this path we just discard the values */
- for (; k < DCTSIZE2; k++) {
- HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
- r = s >> 4;
- s &= 15;
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
- EndOfBlock: ;
- }
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
- ASSIGN_STATE(entropy->saved, state);
- }
- /* Account for restart interval if using restarts */
- if (cinfo->restart_interval)
- entropy->restarts_to_go--;
- return TRUE;
- }
- /*
- * Initialize for a Huffman-compressed scan.
- */
- METHODDEF(void)
- start_pass_huff_decoder (j_decompress_ptr cinfo)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci, blkn, tbl, i;
- jpeg_component_info * compptr;
- if (cinfo->progressive_mode) {
- /* Validate progressive scan parameters */
- if (cinfo->Ss == 0) {
- if (cinfo->Se != 0)
- goto bad;
- } else {
- /* need not check Ss/Se < 0 since they came from unsigned bytes */
- if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
- goto bad;
- /* AC scans may have only one component */
- if (cinfo->comps_in_scan != 1)
- goto bad;
- }
- if (cinfo->Ah != 0) {
- /* Successive approximation refinement scan: must have Al = Ah-1. */
- if (cinfo->Ah-1 != cinfo->Al)
- goto bad;
- }
- if (cinfo->Al > 13) { /* need not check for < 0 */
- /* Arguably the maximum Al value should be less than 13 for 8-bit
- * precision, but the spec doesn't say so, and we try to be liberal
- * about what we accept. Note: large Al values could result in
- * out-of-range DC coefficients during early scans, leading to bizarre
- * displays due to overflows in the IDCT math. But we won't crash.
- */
- bad:
- ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
- cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
- }
- /* Update progression status, and verify that scan order is legal.
- * Note that inter-scan inconsistencies are treated as warnings
- * not fatal errors ... not clear if this is right way to behave.
- */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
- int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
- if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
- WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
- for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
- int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
- if (cinfo->Ah != expected)
- WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
- coef_bit_ptr[coefi] = cinfo->Al;
- }
- }
- /* Select MCU decoding routine */
- if (cinfo->Ah == 0) {
- if (cinfo->Ss == 0)
- entropy->pub.decode_mcu = decode_mcu_DC_first;
- else
- entropy->pub.decode_mcu = decode_mcu_AC_first;
- } else {
- if (cinfo->Ss == 0)
- entropy->pub.decode_mcu = decode_mcu_DC_refine;
- else
- entropy->pub.decode_mcu = decode_mcu_AC_refine;
- }
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Make sure requested tables are present, and compute derived tables.
- * We may build same derived table more than once, but it's not expensive.
- */
- if (cinfo->Ss == 0) {
- if (cinfo->Ah == 0) { /* DC refinement needs no table */
- tbl = compptr->dc_tbl_no;
- jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
- & entropy->derived_tbls[tbl]);
- }
- } else {
- tbl = compptr->ac_tbl_no;
- jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
- & entropy->derived_tbls[tbl]);
- /* remember the single active table */
- entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
- }
- /* Initialize DC predictions to 0 */
- entropy->saved.last_dc_val[ci] = 0;
- }
- /* Initialize private state variables */
- entropy->saved.EOBRUN = 0;
- } else {
- /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
- * This ought to be an error condition, but we make it a warning because
- * there are some baseline files out there with all zeroes in these bytes.
- */
- if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
- ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
- cinfo->Se != cinfo->lim_Se))
- WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
- /* Select MCU decoding routine */
- /* We retain the hard-coded case for full-size blocks.
- * This is not necessary, but it appears that this version is slightly
- * more performant in the given implementation.
- * With an improved implementation we would prefer a single optimized
- * function.
- */
- if (cinfo->lim_Se != DCTSIZE2-1)
- entropy->pub.decode_mcu = decode_mcu_sub;
- else
- entropy->pub.decode_mcu = decode_mcu;
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Compute derived values for Huffman tables */
- /* We may do this more than once for a table, but it's not expensive */
- tbl = compptr->dc_tbl_no;
- jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
- & entropy->dc_derived_tbls[tbl]);
- if (cinfo->lim_Se) { /* AC needs no table when not present */
- tbl = compptr->ac_tbl_no;
- jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
- & entropy->ac_derived_tbls[tbl]);
- }
- /* Initialize DC predictions to 0 */
- entropy->saved.last_dc_val[ci] = 0;
- }
- /* Precalculate decoding info for each block in an MCU of this scan */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- /* Precalculate which table to use for each block */
- entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
- entropy->ac_cur_tbls[blkn] = /* AC needs no table when not present */
- cinfo->lim_Se ? entropy->ac_derived_tbls[compptr->ac_tbl_no] : NULL;
- /* Decide whether we really care about the coefficient values */
- if (compptr->component_needed) {
- ci = compptr->DCT_v_scaled_size;
- i = compptr->DCT_h_scaled_size;
- switch (cinfo->lim_Se) {
- case (1*1-1):
- entropy->coef_limit[blkn] = 1;
- break;
- case (2*2-1):
- if (ci <= 0 || ci > 2) ci = 2;
- if (i <= 0 || i > 2) i = 2;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
- break;
- case (3*3-1):
- if (ci <= 0 || ci > 3) ci = 3;
- if (i <= 0 || i > 3) i = 3;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
- break;
- case (4*4-1):
- if (ci <= 0 || ci > 4) ci = 4;
- if (i <= 0 || i > 4) i = 4;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
- break;
- case (5*5-1):
- if (ci <= 0 || ci > 5) ci = 5;
- if (i <= 0 || i > 5) i = 5;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
- break;
- case (6*6-1):
- if (ci <= 0 || ci > 6) ci = 6;
- if (i <= 0 || i > 6) i = 6;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
- break;
- case (7*7-1):
- if (ci <= 0 || ci > 7) ci = 7;
- if (i <= 0 || i > 7) i = 7;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
- break;
- default:
- if (ci <= 0 || ci > 8) ci = 8;
- if (i <= 0 || i > 8) i = 8;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
- }
- } else {
- entropy->coef_limit[blkn] = 0;
- }
- }
- }
- /* Initialize bitread state variables */
- entropy->bitstate.bits_left = 0;
- entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
- entropy->insufficient_data = FALSE;
- /* Initialize restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
- }
- /*
- * Module initialization routine for Huffman entropy decoding.
- */
- GLOBAL(void)
- jinit_huff_decoder (j_decompress_ptr cinfo)
- {
- huff_entropy_ptr entropy;
- int i;
- entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_decoder));
- cinfo->entropy = &entropy->pub;
- entropy->pub.start_pass = start_pass_huff_decoder;
- entropy->pub.finish_pass = finish_pass_huff;
- if (cinfo->progressive_mode) {
- /* Create progression status table */
- int *coef_bit_ptr, ci;
- cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components * DCTSIZE2 * SIZEOF(int));
- coef_bit_ptr = & cinfo->coef_bits[0][0];
- for (ci = 0; ci < cinfo->num_components; ci++)
- for (i = 0; i < DCTSIZE2; i++)
- *coef_bit_ptr++ = -1;
- /* Mark derived tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->derived_tbls[i] = NULL;
- }
- } else {
- /* Mark derived tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
- }
- }
- }
|