123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389 |
- /*
- * Copyright (c) 2018 Sergey Lavrushkin
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- /**
- * @file
- * DNN native backend implementation.
- */
- #include "dnn_backend_native.h"
- #include "libavutil/avassert.h"
- static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
- {
- ConvolutionalNetwork *network = (ConvolutionalNetwork *)model;
- InputParams *input_params;
- ConvolutionalParams *conv_params;
- DepthToSpaceParams *depth_to_space_params;
- int cur_width, cur_height, cur_channels;
- int32_t layer;
- if (network->layers_num <= 0 || network->layers[0].type != INPUT){
- return DNN_ERROR;
- }
- else{
- input_params = (InputParams *)network->layers[0].params;
- input_params->width = cur_width = input->width;
- input_params->height = cur_height = input->height;
- input_params->channels = cur_channels = input->channels;
- if (input->data){
- av_freep(&input->data);
- }
- av_assert0(input->dt == DNN_FLOAT);
- network->layers[0].output = input->data = av_malloc(cur_height * cur_width * cur_channels * sizeof(float));
- if (!network->layers[0].output){
- return DNN_ERROR;
- }
- }
- for (layer = 1; layer < network->layers_num; ++layer){
- switch (network->layers[layer].type){
- case CONV:
- conv_params = (ConvolutionalParams *)network->layers[layer].params;
- if (conv_params->input_num != cur_channels){
- return DNN_ERROR;
- }
- cur_channels = conv_params->output_num;
- if (conv_params->padding_method == VALID) {
- int pad_size = (conv_params->kernel_size - 1) * conv_params->dilation;
- cur_height -= pad_size;
- cur_width -= pad_size;
- }
- break;
- case DEPTH_TO_SPACE:
- depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
- if (cur_channels % (depth_to_space_params->block_size * depth_to_space_params->block_size) != 0){
- return DNN_ERROR;
- }
- cur_channels = cur_channels / (depth_to_space_params->block_size * depth_to_space_params->block_size);
- cur_height *= depth_to_space_params->block_size;
- cur_width *= depth_to_space_params->block_size;
- break;
- default:
- return DNN_ERROR;
- }
- if (network->layers[layer].output){
- av_freep(&network->layers[layer].output);
- }
- if (cur_height <= 0 || cur_width <= 0)
- return DNN_ERROR;
- network->layers[layer].output = av_malloc(cur_height * cur_width * cur_channels * sizeof(float));
- if (!network->layers[layer].output){
- return DNN_ERROR;
- }
- }
- return DNN_SUCCESS;
- }
- // Loads model and its parameters that are stored in a binary file with following structure:
- // layers_num,layer_type,layer_parameterss,layer_type,layer_parameters...
- // For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases
- // For DEPTH_TO_SPACE layer: block_size
- DNNModel *ff_dnn_load_model_native(const char *model_filename)
- {
- DNNModel *model = NULL;
- ConvolutionalNetwork *network = NULL;
- AVIOContext *model_file_context;
- int file_size, dnn_size, kernel_size, i;
- int32_t layer;
- DNNLayerType layer_type;
- ConvolutionalParams *conv_params;
- DepthToSpaceParams *depth_to_space_params;
- model = av_malloc(sizeof(DNNModel));
- if (!model){
- return NULL;
- }
- if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){
- av_freep(&model);
- return NULL;
- }
- file_size = avio_size(model_file_context);
- network = av_malloc(sizeof(ConvolutionalNetwork));
- if (!network){
- avio_closep(&model_file_context);
- av_freep(&model);
- return NULL;
- }
- model->model = (void *)network;
- network->layers_num = 1 + (int32_t)avio_rl32(model_file_context);
- dnn_size = 4;
- network->layers = av_malloc(network->layers_num * sizeof(Layer));
- if (!network->layers){
- av_freep(&network);
- avio_closep(&model_file_context);
- av_freep(&model);
- return NULL;
- }
- for (layer = 0; layer < network->layers_num; ++layer){
- network->layers[layer].output = NULL;
- network->layers[layer].params = NULL;
- }
- network->layers[0].type = INPUT;
- network->layers[0].params = av_malloc(sizeof(InputParams));
- if (!network->layers[0].params){
- avio_closep(&model_file_context);
- ff_dnn_free_model_native(&model);
- return NULL;
- }
- for (layer = 1; layer < network->layers_num; ++layer){
- layer_type = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
- switch (layer_type){
- case CONV:
- conv_params = av_malloc(sizeof(ConvolutionalParams));
- if (!conv_params){
- avio_closep(&model_file_context);
- ff_dnn_free_model_native(&model);
- return NULL;
- }
- conv_params->dilation = (int32_t)avio_rl32(model_file_context);
- conv_params->padding_method = (int32_t)avio_rl32(model_file_context);
- conv_params->activation = (int32_t)avio_rl32(model_file_context);
- conv_params->input_num = (int32_t)avio_rl32(model_file_context);
- conv_params->output_num = (int32_t)avio_rl32(model_file_context);
- conv_params->kernel_size = (int32_t)avio_rl32(model_file_context);
- kernel_size = conv_params->input_num * conv_params->output_num *
- conv_params->kernel_size * conv_params->kernel_size;
- dnn_size += 24 + (kernel_size + conv_params->output_num << 2);
- if (dnn_size > file_size || conv_params->input_num <= 0 ||
- conv_params->output_num <= 0 || conv_params->kernel_size <= 0){
- avio_closep(&model_file_context);
- ff_dnn_free_model_native(&model);
- return NULL;
- }
- conv_params->kernel = av_malloc(kernel_size * sizeof(float));
- conv_params->biases = av_malloc(conv_params->output_num * sizeof(float));
- if (!conv_params->kernel || !conv_params->biases){
- avio_closep(&model_file_context);
- ff_dnn_free_model_native(&model);
- return NULL;
- }
- for (i = 0; i < kernel_size; ++i){
- conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
- }
- for (i = 0; i < conv_params->output_num; ++i){
- conv_params->biases[i] = av_int2float(avio_rl32(model_file_context));
- }
- network->layers[layer].type = CONV;
- network->layers[layer].params = conv_params;
- break;
- case DEPTH_TO_SPACE:
- depth_to_space_params = av_malloc(sizeof(DepthToSpaceParams));
- if (!depth_to_space_params){
- avio_closep(&model_file_context);
- ff_dnn_free_model_native(&model);
- return NULL;
- }
- depth_to_space_params->block_size = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
- network->layers[layer].type = DEPTH_TO_SPACE;
- network->layers[layer].params = depth_to_space_params;
- break;
- default:
- avio_closep(&model_file_context);
- ff_dnn_free_model_native(&model);
- return NULL;
- }
- }
- avio_closep(&model_file_context);
- if (dnn_size != file_size){
- ff_dnn_free_model_native(&model);
- return NULL;
- }
- model->set_input_output = &set_input_output_native;
- return model;
- }
- #define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
- static void convolve(const float *input, float *output, const ConvolutionalParams *conv_params, int width, int height)
- {
- int radius = conv_params->kernel_size >> 1;
- int src_linesize = width * conv_params->input_num;
- int filter_linesize = conv_params->kernel_size * conv_params->input_num;
- int filter_size = conv_params->kernel_size * filter_linesize;
- int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
- for (int y = pad_size; y < height - pad_size; ++y) {
- for (int x = pad_size; x < width - pad_size; ++x) {
- for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
- output[n_filter] = conv_params->biases[n_filter];
- for (int ch = 0; ch < conv_params->input_num; ++ch) {
- for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
- for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
- float input_pel;
- if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
- int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height);
- int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width);
- input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
- } else {
- int y_pos = y + (kernel_y - radius) * conv_params->dilation;
- int x_pos = x + (kernel_x - radius) * conv_params->dilation;
- input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
- input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
- }
- output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
- kernel_x * conv_params->input_num + ch];
- }
- }
- }
- switch (conv_params->activation){
- case RELU:
- output[n_filter] = FFMAX(output[n_filter], 0.0);
- break;
- case TANH:
- output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
- break;
- case SIGMOID:
- output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
- break;
- case NONE:
- break;
- case LEAKY_RELU:
- output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
- }
- }
- output += conv_params->output_num;
- }
- }
- }
- static void depth_to_space(const float *input, float *output, int block_size, int width, int height, int channels)
- {
- int y, x, by, bx, ch;
- int new_channels = channels / (block_size * block_size);
- int output_linesize = width * channels;
- int by_linesize = output_linesize / block_size;
- int x_linesize = new_channels * block_size;
- for (y = 0; y < height; ++y){
- for (x = 0; x < width; ++x){
- for (by = 0; by < block_size; ++by){
- for (bx = 0; bx < block_size; ++bx){
- for (ch = 0; ch < new_channels; ++ch){
- output[by * by_linesize + x * x_linesize + bx * new_channels + ch] = input[ch];
- }
- input += new_channels;
- }
- }
- }
- output += output_linesize;
- }
- }
- DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *outputs, uint32_t nb_output)
- {
- ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model;
- int cur_width, cur_height, cur_channels;
- int32_t layer;
- InputParams *input_params;
- ConvolutionalParams *conv_params;
- DepthToSpaceParams *depth_to_space_params;
- if (network->layers_num <= 0 || network->layers[0].type != INPUT || !network->layers[0].output){
- return DNN_ERROR;
- }
- else{
- input_params = (InputParams *)network->layers[0].params;
- cur_width = input_params->width;
- cur_height = input_params->height;
- cur_channels = input_params->channels;
- }
- for (layer = 1; layer < network->layers_num; ++layer){
- if (!network->layers[layer].output){
- return DNN_ERROR;
- }
- switch (network->layers[layer].type){
- case CONV:
- conv_params = (ConvolutionalParams *)network->layers[layer].params;
- convolve(network->layers[layer - 1].output, network->layers[layer].output, conv_params, cur_width, cur_height);
- cur_channels = conv_params->output_num;
- if (conv_params->padding_method == VALID) {
- int pad_size = (conv_params->kernel_size - 1) * conv_params->dilation;
- cur_height -= pad_size;
- cur_width -= pad_size;
- }
- break;
- case DEPTH_TO_SPACE:
- depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
- depth_to_space(network->layers[layer - 1].output, network->layers[layer].output,
- depth_to_space_params->block_size, cur_width, cur_height, cur_channels);
- cur_height *= depth_to_space_params->block_size;
- cur_width *= depth_to_space_params->block_size;
- cur_channels /= depth_to_space_params->block_size * depth_to_space_params->block_size;
- break;
- case INPUT:
- return DNN_ERROR;
- }
- }
- // native mode does not support multiple outputs yet
- if (nb_output > 1)
- return DNN_ERROR;
- outputs[0].data = network->layers[network->layers_num - 1].output;
- outputs[0].height = cur_height;
- outputs[0].width = cur_width;
- outputs[0].channels = cur_channels;
- return DNN_SUCCESS;
- }
- void ff_dnn_free_model_native(DNNModel **model)
- {
- ConvolutionalNetwork *network;
- ConvolutionalParams *conv_params;
- int32_t layer;
- if (*model)
- {
- network = (ConvolutionalNetwork *)(*model)->model;
- for (layer = 0; layer < network->layers_num; ++layer){
- av_freep(&network->layers[layer].output);
- if (network->layers[layer].type == CONV){
- conv_params = (ConvolutionalParams *)network->layers[layer].params;
- av_freep(&conv_params->kernel);
- av_freep(&conv_params->biases);
- }
- av_freep(&network->layers[layer].params);
- }
- av_freep(&network->layers);
- av_freep(&network);
- av_freep(model);
- }
- }
|