af_afir.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864
  1. /*
  2. * Copyright (c) 2017 Paul B Mahol
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * An arbitrary audio FIR filter
  23. */
  24. #include <float.h>
  25. #include "libavutil/common.h"
  26. #include "libavutil/float_dsp.h"
  27. #include "libavutil/intreadwrite.h"
  28. #include "libavutil/opt.h"
  29. #include "libavutil/xga_font_data.h"
  30. #include "libavcodec/avfft.h"
  31. #include "audio.h"
  32. #include "avfilter.h"
  33. #include "filters.h"
  34. #include "formats.h"
  35. #include "internal.h"
  36. #include "af_afir.h"
  37. static void fcmul_add_c(float *sum, const float *t, const float *c, ptrdiff_t len)
  38. {
  39. int n;
  40. for (n = 0; n < len; n++) {
  41. const float cre = c[2 * n ];
  42. const float cim = c[2 * n + 1];
  43. const float tre = t[2 * n ];
  44. const float tim = t[2 * n + 1];
  45. sum[2 * n ] += tre * cre - tim * cim;
  46. sum[2 * n + 1] += tre * cim + tim * cre;
  47. }
  48. sum[2 * n] += t[2 * n] * c[2 * n];
  49. }
  50. static int fir_quantum(AVFilterContext *ctx, AVFrame *out, int ch, int offset)
  51. {
  52. AudioFIRContext *s = ctx->priv;
  53. const float *in = (const float *)s->in[0]->extended_data[ch] + offset;
  54. float *block, *buf, *ptr = (float *)out->extended_data[ch] + offset;
  55. const int nb_samples = FFMIN(s->min_part_size, out->nb_samples - offset);
  56. int n, i, j;
  57. for (int segment = 0; segment < s->nb_segments; segment++) {
  58. AudioFIRSegment *seg = &s->seg[segment];
  59. float *src = (float *)seg->input->extended_data[ch];
  60. float *dst = (float *)seg->output->extended_data[ch];
  61. float *sum = (float *)seg->sum->extended_data[ch];
  62. s->fdsp->vector_fmul_scalar(src + seg->input_offset, in, s->dry_gain, FFALIGN(nb_samples, 4));
  63. emms_c();
  64. seg->output_offset[ch] += s->min_part_size;
  65. if (seg->output_offset[ch] == seg->part_size) {
  66. seg->output_offset[ch] = 0;
  67. } else {
  68. memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
  69. dst += seg->output_offset[ch];
  70. for (n = 0; n < nb_samples; n++) {
  71. ptr[n] += dst[n];
  72. }
  73. continue;
  74. }
  75. memset(sum, 0, sizeof(*sum) * seg->fft_length);
  76. block = (float *)seg->block->extended_data[ch] + seg->part_index[ch] * seg->block_size;
  77. memset(block + seg->part_size, 0, sizeof(*block) * (seg->fft_length - seg->part_size));
  78. memcpy(block, src, sizeof(*src) * seg->part_size);
  79. av_rdft_calc(seg->rdft[ch], block);
  80. block[2 * seg->part_size] = block[1];
  81. block[1] = 0;
  82. j = seg->part_index[ch];
  83. for (i = 0; i < seg->nb_partitions; i++) {
  84. const int coffset = j * seg->coeff_size;
  85. const float *block = (const float *)seg->block->extended_data[ch] + i * seg->block_size;
  86. const FFTComplex *coeff = (const FFTComplex *)seg->coeff->extended_data[ch * !s->one2many] + coffset;
  87. s->afirdsp.fcmul_add(sum, block, (const float *)coeff, seg->part_size);
  88. if (j == 0)
  89. j = seg->nb_partitions;
  90. j--;
  91. }
  92. sum[1] = sum[2 * seg->part_size];
  93. av_rdft_calc(seg->irdft[ch], sum);
  94. buf = (float *)seg->buffer->extended_data[ch];
  95. for (n = 0; n < seg->part_size; n++) {
  96. buf[n] += sum[n];
  97. }
  98. memcpy(dst, buf, seg->part_size * sizeof(*dst));
  99. buf = (float *)seg->buffer->extended_data[ch];
  100. memcpy(buf, sum + seg->part_size, seg->part_size * sizeof(*buf));
  101. seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions;
  102. memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
  103. for (n = 0; n < nb_samples; n++) {
  104. ptr[n] += dst[n];
  105. }
  106. }
  107. s->fdsp->vector_fmul_scalar(ptr, ptr, s->wet_gain, FFALIGN(nb_samples, 4));
  108. emms_c();
  109. return 0;
  110. }
  111. static int fir_channel(AVFilterContext *ctx, AVFrame *out, int ch)
  112. {
  113. AudioFIRContext *s = ctx->priv;
  114. for (int offset = 0; offset < out->nb_samples; offset += s->min_part_size) {
  115. fir_quantum(ctx, out, ch, offset);
  116. }
  117. return 0;
  118. }
  119. static int fir_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  120. {
  121. AVFrame *out = arg;
  122. const int start = (out->channels * jobnr) / nb_jobs;
  123. const int end = (out->channels * (jobnr+1)) / nb_jobs;
  124. for (int ch = start; ch < end; ch++) {
  125. fir_channel(ctx, out, ch);
  126. }
  127. return 0;
  128. }
  129. static int fir_frame(AudioFIRContext *s, AVFrame *in, AVFilterLink *outlink)
  130. {
  131. AVFilterContext *ctx = outlink->src;
  132. AVFrame *out = NULL;
  133. out = ff_get_audio_buffer(outlink, in->nb_samples);
  134. if (!out) {
  135. av_frame_free(&in);
  136. return AVERROR(ENOMEM);
  137. }
  138. if (s->pts == AV_NOPTS_VALUE)
  139. s->pts = in->pts;
  140. s->in[0] = in;
  141. ctx->internal->execute(ctx, fir_channels, out, NULL, FFMIN(outlink->channels,
  142. ff_filter_get_nb_threads(ctx)));
  143. out->pts = s->pts;
  144. if (s->pts != AV_NOPTS_VALUE)
  145. s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base);
  146. av_frame_free(&in);
  147. s->in[0] = NULL;
  148. return ff_filter_frame(outlink, out);
  149. }
  150. static void drawtext(AVFrame *pic, int x, int y, const char *txt, uint32_t color)
  151. {
  152. const uint8_t *font;
  153. int font_height;
  154. int i;
  155. font = avpriv_cga_font, font_height = 8;
  156. for (i = 0; txt[i]; i++) {
  157. int char_y, mask;
  158. uint8_t *p = pic->data[0] + y * pic->linesize[0] + (x + i * 8) * 4;
  159. for (char_y = 0; char_y < font_height; char_y++) {
  160. for (mask = 0x80; mask; mask >>= 1) {
  161. if (font[txt[i] * font_height + char_y] & mask)
  162. AV_WL32(p, color);
  163. p += 4;
  164. }
  165. p += pic->linesize[0] - 8 * 4;
  166. }
  167. }
  168. }
  169. static void draw_line(AVFrame *out, int x0, int y0, int x1, int y1, uint32_t color)
  170. {
  171. int dx = FFABS(x1-x0);
  172. int dy = FFABS(y1-y0), sy = y0 < y1 ? 1 : -1;
  173. int err = (dx>dy ? dx : -dy) / 2, e2;
  174. for (;;) {
  175. AV_WL32(out->data[0] + y0 * out->linesize[0] + x0 * 4, color);
  176. if (x0 == x1 && y0 == y1)
  177. break;
  178. e2 = err;
  179. if (e2 >-dx) {
  180. err -= dy;
  181. x0--;
  182. }
  183. if (e2 < dy) {
  184. err += dx;
  185. y0 += sy;
  186. }
  187. }
  188. }
  189. static void draw_response(AVFilterContext *ctx, AVFrame *out)
  190. {
  191. AudioFIRContext *s = ctx->priv;
  192. float *mag, *phase, *delay, min = FLT_MAX, max = FLT_MIN;
  193. float min_delay = FLT_MAX, max_delay = FLT_MIN;
  194. int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
  195. char text[32];
  196. int channel, i, x;
  197. memset(out->data[0], 0, s->h * out->linesize[0]);
  198. phase = av_malloc_array(s->w, sizeof(*phase));
  199. mag = av_malloc_array(s->w, sizeof(*mag));
  200. delay = av_malloc_array(s->w, sizeof(*delay));
  201. if (!mag || !phase || !delay)
  202. goto end;
  203. channel = av_clip(s->ir_channel, 0, s->in[1]->channels - 1);
  204. for (i = 0; i < s->w; i++) {
  205. const float *src = (const float *)s->in[1]->extended_data[channel];
  206. double w = i * M_PI / (s->w - 1);
  207. double div, real_num = 0., imag_num = 0., real = 0., imag = 0.;
  208. for (x = 0; x < s->nb_taps; x++) {
  209. real += cos(-x * w) * src[x];
  210. imag += sin(-x * w) * src[x];
  211. real_num += cos(-x * w) * src[x] * x;
  212. imag_num += sin(-x * w) * src[x] * x;
  213. }
  214. mag[i] = hypot(real, imag);
  215. phase[i] = atan2(imag, real);
  216. div = real * real + imag * imag;
  217. delay[i] = (real_num * real + imag_num * imag) / div;
  218. min = fminf(min, mag[i]);
  219. max = fmaxf(max, mag[i]);
  220. min_delay = fminf(min_delay, delay[i]);
  221. max_delay = fmaxf(max_delay, delay[i]);
  222. }
  223. for (i = 0; i < s->w; i++) {
  224. int ymag = mag[i] / max * (s->h - 1);
  225. int ydelay = (delay[i] - min_delay) / (max_delay - min_delay) * (s->h - 1);
  226. int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1);
  227. ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1);
  228. yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1);
  229. ydelay = s->h - 1 - av_clip(ydelay, 0, s->h - 1);
  230. if (prev_ymag < 0)
  231. prev_ymag = ymag;
  232. if (prev_yphase < 0)
  233. prev_yphase = yphase;
  234. if (prev_ydelay < 0)
  235. prev_ydelay = ydelay;
  236. draw_line(out, i, ymag, FFMAX(i - 1, 0), prev_ymag, 0xFFFF00FF);
  237. draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00);
  238. draw_line(out, i, ydelay, FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF);
  239. prev_ymag = ymag;
  240. prev_yphase = yphase;
  241. prev_ydelay = ydelay;
  242. }
  243. if (s->w > 400 && s->h > 100) {
  244. drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD);
  245. snprintf(text, sizeof(text), "%.2f", max);
  246. drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD);
  247. drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD);
  248. snprintf(text, sizeof(text), "%.2f", min);
  249. drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD);
  250. drawtext(out, 2, 22, "Max Delay:", 0xDDDDDDDD);
  251. snprintf(text, sizeof(text), "%.2f", max_delay);
  252. drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD);
  253. drawtext(out, 2, 32, "Min Delay:", 0xDDDDDDDD);
  254. snprintf(text, sizeof(text), "%.2f", min_delay);
  255. drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD);
  256. }
  257. end:
  258. av_free(delay);
  259. av_free(phase);
  260. av_free(mag);
  261. }
  262. static int init_segment(AVFilterContext *ctx, AudioFIRSegment *seg,
  263. int offset, int nb_partitions, int part_size)
  264. {
  265. AudioFIRContext *s = ctx->priv;
  266. seg->rdft = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->rdft));
  267. seg->irdft = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->irdft));
  268. if (!seg->rdft || !seg->irdft)
  269. return AVERROR(ENOMEM);
  270. seg->fft_length = part_size * 2 + 1;
  271. seg->part_size = part_size;
  272. seg->block_size = FFALIGN(seg->fft_length, 32);
  273. seg->coeff_size = FFALIGN(seg->part_size + 1, 32);
  274. seg->nb_partitions = nb_partitions;
  275. seg->input_size = offset + s->min_part_size;
  276. seg->input_offset = offset;
  277. seg->part_index = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->part_index));
  278. seg->output_offset = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->output_offset));
  279. if (!seg->part_index || !seg->output_offset)
  280. return AVERROR(ENOMEM);
  281. for (int ch = 0; ch < ctx->inputs[0]->channels; ch++) {
  282. seg->rdft[ch] = av_rdft_init(av_log2(2 * part_size), DFT_R2C);
  283. seg->irdft[ch] = av_rdft_init(av_log2(2 * part_size), IDFT_C2R);
  284. if (!seg->rdft[ch] || !seg->irdft[ch])
  285. return AVERROR(ENOMEM);
  286. }
  287. seg->sum = ff_get_audio_buffer(ctx->inputs[0], seg->fft_length);
  288. seg->block = ff_get_audio_buffer(ctx->inputs[0], seg->nb_partitions * seg->block_size);
  289. seg->buffer = ff_get_audio_buffer(ctx->inputs[0], seg->part_size);
  290. seg->coeff = ff_get_audio_buffer(ctx->inputs[1], seg->nb_partitions * seg->coeff_size * 2);
  291. seg->input = ff_get_audio_buffer(ctx->inputs[0], seg->input_size);
  292. seg->output = ff_get_audio_buffer(ctx->inputs[0], seg->part_size);
  293. if (!seg->buffer || !seg->sum || !seg->block || !seg->coeff || !seg->input || !seg->output)
  294. return AVERROR(ENOMEM);
  295. return 0;
  296. }
  297. static int convert_coeffs(AVFilterContext *ctx)
  298. {
  299. AudioFIRContext *s = ctx->priv;
  300. int left, offset = 0, part_size, max_part_size;
  301. int ret, i, ch, n;
  302. float power = 0;
  303. s->nb_taps = ff_inlink_queued_samples(ctx->inputs[1]);
  304. if (s->nb_taps <= 0)
  305. return AVERROR(EINVAL);
  306. if (s->minp > s->maxp) {
  307. s->maxp = s->minp;
  308. }
  309. left = s->nb_taps;
  310. part_size = 1 << av_log2(s->minp);
  311. max_part_size = 1 << av_log2(s->maxp);
  312. s->min_part_size = part_size;
  313. for (i = 0; left > 0; i++) {
  314. int step = part_size == max_part_size ? INT_MAX : 1 + (i == 0);
  315. int nb_partitions = FFMIN(step, (left + part_size - 1) / part_size);
  316. s->nb_segments = i + 1;
  317. ret = init_segment(ctx, &s->seg[i], offset, nb_partitions, part_size);
  318. if (ret < 0)
  319. return ret;
  320. offset += nb_partitions * part_size;
  321. left -= nb_partitions * part_size;
  322. part_size *= 2;
  323. part_size = FFMIN(part_size, max_part_size);
  324. }
  325. ret = ff_inlink_consume_samples(ctx->inputs[1], s->nb_taps, s->nb_taps, &s->in[1]);
  326. if (ret < 0)
  327. return ret;
  328. if (ret == 0)
  329. return AVERROR_BUG;
  330. if (s->response)
  331. draw_response(ctx, s->video);
  332. s->gain = 1;
  333. switch (s->gtype) {
  334. case -1:
  335. /* nothing to do */
  336. break;
  337. case 0:
  338. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  339. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  340. for (i = 0; i < s->nb_taps; i++)
  341. power += FFABS(time[i]);
  342. }
  343. s->gain = ctx->inputs[1]->channels / power;
  344. break;
  345. case 1:
  346. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  347. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  348. for (i = 0; i < s->nb_taps; i++)
  349. power += time[i];
  350. }
  351. s->gain = ctx->inputs[1]->channels / power;
  352. break;
  353. case 2:
  354. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  355. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  356. for (i = 0; i < s->nb_taps; i++)
  357. power += time[i] * time[i];
  358. }
  359. s->gain = sqrtf(ch / power);
  360. break;
  361. default:
  362. return AVERROR_BUG;
  363. }
  364. s->gain = FFMIN(s->gain * s->ir_gain, 1.f);
  365. av_log(ctx, AV_LOG_DEBUG, "power %f, gain %f\n", power, s->gain);
  366. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  367. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  368. s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(s->nb_taps, 4));
  369. }
  370. av_log(ctx, AV_LOG_DEBUG, "nb_taps: %d\n", s->nb_taps);
  371. av_log(ctx, AV_LOG_DEBUG, "nb_segments: %d\n", s->nb_segments);
  372. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  373. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  374. int toffset = 0;
  375. for (i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++)
  376. time[i] = 0;
  377. av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch);
  378. for (int segment = 0; segment < s->nb_segments; segment++) {
  379. AudioFIRSegment *seg = &s->seg[segment];
  380. float *block = (float *)seg->block->extended_data[ch];
  381. FFTComplex *coeff = (FFTComplex *)seg->coeff->extended_data[ch];
  382. av_log(ctx, AV_LOG_DEBUG, "segment: %d\n", segment);
  383. for (i = 0; i < seg->nb_partitions; i++) {
  384. const float scale = 1.f / seg->part_size;
  385. const int coffset = i * seg->coeff_size;
  386. const int remaining = s->nb_taps - toffset;
  387. const int size = remaining >= seg->part_size ? seg->part_size : remaining;
  388. memset(block, 0, sizeof(*block) * seg->fft_length);
  389. memcpy(block, time + toffset, size * sizeof(*block));
  390. av_rdft_calc(seg->rdft[0], block);
  391. coeff[coffset].re = block[0] * scale;
  392. coeff[coffset].im = 0;
  393. for (n = 1; n < seg->part_size; n++) {
  394. coeff[coffset + n].re = block[2 * n] * scale;
  395. coeff[coffset + n].im = block[2 * n + 1] * scale;
  396. }
  397. coeff[coffset + seg->part_size].re = block[1] * scale;
  398. coeff[coffset + seg->part_size].im = 0;
  399. toffset += size;
  400. }
  401. av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions);
  402. av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size);
  403. av_log(ctx, AV_LOG_DEBUG, "block size: %d\n", seg->block_size);
  404. av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length);
  405. av_log(ctx, AV_LOG_DEBUG, "coeff_size: %d\n", seg->coeff_size);
  406. av_log(ctx, AV_LOG_DEBUG, "input_size: %d\n", seg->input_size);
  407. av_log(ctx, AV_LOG_DEBUG, "input_offset: %d\n", seg->input_offset);
  408. }
  409. }
  410. av_frame_free(&s->in[1]);
  411. s->have_coeffs = 1;
  412. return 0;
  413. }
  414. static int check_ir(AVFilterLink *link, AVFrame *frame)
  415. {
  416. AVFilterContext *ctx = link->dst;
  417. AudioFIRContext *s = ctx->priv;
  418. int nb_taps, max_nb_taps;
  419. nb_taps = ff_inlink_queued_samples(link);
  420. max_nb_taps = s->max_ir_len * ctx->outputs[0]->sample_rate;
  421. if (nb_taps > max_nb_taps) {
  422. av_log(ctx, AV_LOG_ERROR, "Too big number of coefficients: %d > %d.\n", nb_taps, max_nb_taps);
  423. return AVERROR(EINVAL);
  424. }
  425. return 0;
  426. }
  427. static int activate(AVFilterContext *ctx)
  428. {
  429. AudioFIRContext *s = ctx->priv;
  430. AVFilterLink *outlink = ctx->outputs[0];
  431. int ret, status, available, wanted;
  432. AVFrame *in = NULL;
  433. int64_t pts;
  434. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
  435. if (s->response)
  436. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[1], ctx);
  437. if (!s->eof_coeffs) {
  438. AVFrame *ir = NULL;
  439. ret = check_ir(ctx->inputs[1], ir);
  440. if (ret < 0)
  441. return ret;
  442. if (ff_outlink_get_status(ctx->inputs[1]) == AVERROR_EOF)
  443. s->eof_coeffs = 1;
  444. if (!s->eof_coeffs) {
  445. if (ff_outlink_frame_wanted(ctx->outputs[0]))
  446. ff_inlink_request_frame(ctx->inputs[1]);
  447. else if (s->response && ff_outlink_frame_wanted(ctx->outputs[1]))
  448. ff_inlink_request_frame(ctx->inputs[1]);
  449. return 0;
  450. }
  451. }
  452. if (!s->have_coeffs && s->eof_coeffs) {
  453. ret = convert_coeffs(ctx);
  454. if (ret < 0)
  455. return ret;
  456. }
  457. available = ff_inlink_queued_samples(ctx->inputs[0]);
  458. wanted = FFMAX(s->min_part_size, (available / s->min_part_size) * s->min_part_size);
  459. ret = ff_inlink_consume_samples(ctx->inputs[0], wanted, wanted, &in);
  460. if (ret > 0)
  461. ret = fir_frame(s, in, outlink);
  462. if (ret < 0)
  463. return ret;
  464. if (s->response && s->have_coeffs) {
  465. int64_t old_pts = s->video->pts;
  466. int64_t new_pts = av_rescale_q(s->pts, ctx->inputs[0]->time_base, ctx->outputs[1]->time_base);
  467. if (ff_outlink_frame_wanted(ctx->outputs[1]) && old_pts < new_pts) {
  468. s->video->pts = new_pts;
  469. return ff_filter_frame(ctx->outputs[1], av_frame_clone(s->video));
  470. }
  471. }
  472. if (ff_inlink_queued_samples(ctx->inputs[0]) >= s->min_part_size) {
  473. ff_filter_set_ready(ctx, 10);
  474. return 0;
  475. }
  476. if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) {
  477. if (status == AVERROR_EOF) {
  478. ff_outlink_set_status(ctx->outputs[0], status, pts);
  479. if (s->response)
  480. ff_outlink_set_status(ctx->outputs[1], status, pts);
  481. return 0;
  482. }
  483. }
  484. if (ff_outlink_frame_wanted(ctx->outputs[0]) &&
  485. !ff_outlink_get_status(ctx->inputs[0])) {
  486. ff_inlink_request_frame(ctx->inputs[0]);
  487. return 0;
  488. }
  489. if (s->response &&
  490. ff_outlink_frame_wanted(ctx->outputs[1]) &&
  491. !ff_outlink_get_status(ctx->inputs[0])) {
  492. ff_inlink_request_frame(ctx->inputs[0]);
  493. return 0;
  494. }
  495. return FFERROR_NOT_READY;
  496. }
  497. static int query_formats(AVFilterContext *ctx)
  498. {
  499. AudioFIRContext *s = ctx->priv;
  500. AVFilterFormats *formats;
  501. AVFilterChannelLayouts *layouts;
  502. static const enum AVSampleFormat sample_fmts[] = {
  503. AV_SAMPLE_FMT_FLTP,
  504. AV_SAMPLE_FMT_NONE
  505. };
  506. static const enum AVPixelFormat pix_fmts[] = {
  507. AV_PIX_FMT_RGB0,
  508. AV_PIX_FMT_NONE
  509. };
  510. int ret;
  511. if (s->response) {
  512. AVFilterLink *videolink = ctx->outputs[1];
  513. formats = ff_make_format_list(pix_fmts);
  514. if ((ret = ff_formats_ref(formats, &videolink->in_formats)) < 0)
  515. return ret;
  516. }
  517. layouts = ff_all_channel_counts();
  518. if (!layouts)
  519. return AVERROR(ENOMEM);
  520. if (s->ir_format) {
  521. ret = ff_set_common_channel_layouts(ctx, layouts);
  522. if (ret < 0)
  523. return ret;
  524. } else {
  525. AVFilterChannelLayouts *mono = NULL;
  526. ret = ff_add_channel_layout(&mono, AV_CH_LAYOUT_MONO);
  527. if (ret)
  528. return ret;
  529. if ((ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts)) < 0)
  530. return ret;
  531. if ((ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts)) < 0)
  532. return ret;
  533. if ((ret = ff_channel_layouts_ref(mono, &ctx->inputs[1]->out_channel_layouts)) < 0)
  534. return ret;
  535. }
  536. formats = ff_make_format_list(sample_fmts);
  537. if ((ret = ff_set_common_formats(ctx, formats)) < 0)
  538. return ret;
  539. formats = ff_all_samplerates();
  540. return ff_set_common_samplerates(ctx, formats);
  541. }
  542. static int config_output(AVFilterLink *outlink)
  543. {
  544. AVFilterContext *ctx = outlink->src;
  545. AudioFIRContext *s = ctx->priv;
  546. s->one2many = ctx->inputs[1]->channels == 1;
  547. outlink->sample_rate = ctx->inputs[0]->sample_rate;
  548. outlink->time_base = ctx->inputs[0]->time_base;
  549. outlink->channel_layout = ctx->inputs[0]->channel_layout;
  550. outlink->channels = ctx->inputs[0]->channels;
  551. s->nb_channels = outlink->channels;
  552. s->nb_coef_channels = ctx->inputs[1]->channels;
  553. s->pts = AV_NOPTS_VALUE;
  554. return 0;
  555. }
  556. static void uninit_segment(AVFilterContext *ctx, AudioFIRSegment *seg)
  557. {
  558. AudioFIRContext *s = ctx->priv;
  559. if (seg->rdft) {
  560. for (int ch = 0; ch < s->nb_channels; ch++) {
  561. av_rdft_end(seg->rdft[ch]);
  562. }
  563. }
  564. av_freep(&seg->rdft);
  565. if (seg->irdft) {
  566. for (int ch = 0; ch < s->nb_channels; ch++) {
  567. av_rdft_end(seg->irdft[ch]);
  568. }
  569. }
  570. av_freep(&seg->irdft);
  571. av_freep(&seg->output_offset);
  572. av_freep(&seg->part_index);
  573. av_frame_free(&seg->block);
  574. av_frame_free(&seg->sum);
  575. av_frame_free(&seg->buffer);
  576. av_frame_free(&seg->coeff);
  577. av_frame_free(&seg->input);
  578. av_frame_free(&seg->output);
  579. seg->input_size = 0;
  580. }
  581. static av_cold void uninit(AVFilterContext *ctx)
  582. {
  583. AudioFIRContext *s = ctx->priv;
  584. for (int i = 0; i < s->nb_segments; i++) {
  585. uninit_segment(ctx, &s->seg[i]);
  586. }
  587. av_freep(&s->fdsp);
  588. av_frame_free(&s->in[1]);
  589. for (int i = 0; i < ctx->nb_outputs; i++)
  590. av_freep(&ctx->output_pads[i].name);
  591. av_frame_free(&s->video);
  592. }
  593. static int config_video(AVFilterLink *outlink)
  594. {
  595. AVFilterContext *ctx = outlink->src;
  596. AudioFIRContext *s = ctx->priv;
  597. outlink->sample_aspect_ratio = (AVRational){1,1};
  598. outlink->w = s->w;
  599. outlink->h = s->h;
  600. outlink->frame_rate = s->frame_rate;
  601. outlink->time_base = av_inv_q(outlink->frame_rate);
  602. av_frame_free(&s->video);
  603. s->video = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  604. if (!s->video)
  605. return AVERROR(ENOMEM);
  606. return 0;
  607. }
  608. void ff_afir_init(AudioFIRDSPContext *dsp)
  609. {
  610. dsp->fcmul_add = fcmul_add_c;
  611. if (ARCH_X86)
  612. ff_afir_init_x86(dsp);
  613. }
  614. static av_cold int init(AVFilterContext *ctx)
  615. {
  616. AudioFIRContext *s = ctx->priv;
  617. AVFilterPad pad, vpad;
  618. int ret;
  619. pad = (AVFilterPad){
  620. .name = av_strdup("default"),
  621. .type = AVMEDIA_TYPE_AUDIO,
  622. .config_props = config_output,
  623. };
  624. if (!pad.name)
  625. return AVERROR(ENOMEM);
  626. if (s->response) {
  627. vpad = (AVFilterPad){
  628. .name = av_strdup("filter_response"),
  629. .type = AVMEDIA_TYPE_VIDEO,
  630. .config_props = config_video,
  631. };
  632. if (!vpad.name)
  633. return AVERROR(ENOMEM);
  634. }
  635. ret = ff_insert_outpad(ctx, 0, &pad);
  636. if (ret < 0) {
  637. av_freep(&pad.name);
  638. return ret;
  639. }
  640. if (s->response) {
  641. ret = ff_insert_outpad(ctx, 1, &vpad);
  642. if (ret < 0) {
  643. av_freep(&vpad.name);
  644. return ret;
  645. }
  646. }
  647. s->fdsp = avpriv_float_dsp_alloc(0);
  648. if (!s->fdsp)
  649. return AVERROR(ENOMEM);
  650. ff_afir_init(&s->afirdsp);
  651. return 0;
  652. }
  653. static const AVFilterPad afir_inputs[] = {
  654. {
  655. .name = "main",
  656. .type = AVMEDIA_TYPE_AUDIO,
  657. },{
  658. .name = "ir",
  659. .type = AVMEDIA_TYPE_AUDIO,
  660. },
  661. { NULL }
  662. };
  663. #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  664. #define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  665. #define OFFSET(x) offsetof(AudioFIRContext, x)
  666. static const AVOption afir_options[] = {
  667. { "dry", "set dry gain", OFFSET(dry_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  668. { "wet", "set wet gain", OFFSET(wet_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  669. { "length", "set IR length", OFFSET(length), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  670. { "gtype", "set IR auto gain type",OFFSET(gtype), AV_OPT_TYPE_INT, {.i64=0}, -1, 2, AF, "gtype" },
  671. { "none", "without auto gain", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "gtype" },
  672. { "peak", "peak gain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "gtype" },
  673. { "dc", "DC gain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "gtype" },
  674. { "gn", "gain to noise", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "gtype" },
  675. { "irgain", "set IR gain", OFFSET(ir_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  676. { "irfmt", "set IR format", OFFSET(ir_format), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, AF, "irfmt" },
  677. { "mono", "single channel", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "irfmt" },
  678. { "input", "same as input", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "irfmt" },
  679. { "maxir", "set max IR length", OFFSET(max_ir_len), AV_OPT_TYPE_FLOAT, {.dbl=30}, 0.1, 60, AF },
  680. { "response", "show IR frequency response", OFFSET(response), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF },
  681. { "channel", "set IR channel to display frequency response", OFFSET(ir_channel), AV_OPT_TYPE_INT, {.i64=0}, 0, 1024, VF },
  682. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "hd720"}, 0, 0, VF },
  683. { "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT32_MAX, VF },
  684. { "minp", "set min partition size", OFFSET(minp), AV_OPT_TYPE_INT, {.i64=8192}, 8, 32768, AF },
  685. { "maxp", "set max partition size", OFFSET(maxp), AV_OPT_TYPE_INT, {.i64=8192}, 8, 32768, AF },
  686. { NULL }
  687. };
  688. AVFILTER_DEFINE_CLASS(afir);
  689. AVFilter ff_af_afir = {
  690. .name = "afir",
  691. .description = NULL_IF_CONFIG_SMALL("Apply Finite Impulse Response filter with supplied coefficients in 2nd stream."),
  692. .priv_size = sizeof(AudioFIRContext),
  693. .priv_class = &afir_class,
  694. .query_formats = query_formats,
  695. .init = init,
  696. .activate = activate,
  697. .uninit = uninit,
  698. .inputs = afir_inputs,
  699. .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS |
  700. AVFILTER_FLAG_SLICE_THREADS,
  701. };