vf_ssim.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. /*
  2. * Copyright (c) 2003-2013 Loren Merritt
  3. * Copyright (c) 2015 Paul B Mahol
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /* Computes the Structural Similarity Metric between two video streams.
  22. * original algorithm:
  23. * Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli,
  24. * "Image quality assessment: From error visibility to structural similarity,"
  25. * IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
  26. *
  27. * To improve speed, this implementation uses the standard approximation of
  28. * overlapped 8x8 block sums, rather than the original gaussian weights.
  29. */
  30. /*
  31. * @file
  32. * Caculate the SSIM between two input videos.
  33. */
  34. #include "libavutil/avstring.h"
  35. #include "libavutil/opt.h"
  36. #include "libavutil/pixdesc.h"
  37. #include "avfilter.h"
  38. #include "drawutils.h"
  39. #include "formats.h"
  40. #include "framesync.h"
  41. #include "internal.h"
  42. #include "ssim.h"
  43. #include "video.h"
  44. typedef struct SSIMContext {
  45. const AVClass *class;
  46. FFFrameSync fs;
  47. FILE *stats_file;
  48. char *stats_file_str;
  49. int nb_components;
  50. int max;
  51. uint64_t nb_frames;
  52. double ssim[4], ssim_total;
  53. char comps[4];
  54. float coefs[4];
  55. uint8_t rgba_map[4];
  56. int planewidth[4];
  57. int planeheight[4];
  58. int *temp;
  59. int is_rgb;
  60. float (*ssim_plane)(SSIMDSPContext *dsp,
  61. uint8_t *main, int main_stride,
  62. uint8_t *ref, int ref_stride,
  63. int width, int height, void *temp,
  64. int max);
  65. SSIMDSPContext dsp;
  66. } SSIMContext;
  67. #define OFFSET(x) offsetof(SSIMContext, x)
  68. #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
  69. static const AVOption ssim_options[] = {
  70. {"stats_file", "Set file where to store per-frame difference information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
  71. {"f", "Set file where to store per-frame difference information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
  72. { NULL }
  73. };
  74. FRAMESYNC_DEFINE_CLASS(ssim, SSIMContext, fs);
  75. static void set_meta(AVDictionary **metadata, const char *key, char comp, float d)
  76. {
  77. char value[128];
  78. snprintf(value, sizeof(value), "%0.2f", d);
  79. if (comp) {
  80. char key2[128];
  81. snprintf(key2, sizeof(key2), "%s%c", key, comp);
  82. av_dict_set(metadata, key2, value, 0);
  83. } else {
  84. av_dict_set(metadata, key, value, 0);
  85. }
  86. }
  87. static void ssim_4x4xn_16bit(const uint8_t *main8, ptrdiff_t main_stride,
  88. const uint8_t *ref8, ptrdiff_t ref_stride,
  89. int64_t (*sums)[4], int width)
  90. {
  91. const uint16_t *main16 = (const uint16_t *)main8;
  92. const uint16_t *ref16 = (const uint16_t *)ref8;
  93. int x, y, z;
  94. main_stride >>= 1;
  95. ref_stride >>= 1;
  96. for (z = 0; z < width; z++) {
  97. uint64_t s1 = 0, s2 = 0, ss = 0, s12 = 0;
  98. for (y = 0; y < 4; y++) {
  99. for (x = 0; x < 4; x++) {
  100. unsigned a = main16[x + y * main_stride];
  101. unsigned b = ref16[x + y * ref_stride];
  102. s1 += a;
  103. s2 += b;
  104. ss += a*a;
  105. ss += b*b;
  106. s12 += a*b;
  107. }
  108. }
  109. sums[z][0] = s1;
  110. sums[z][1] = s2;
  111. sums[z][2] = ss;
  112. sums[z][3] = s12;
  113. main16 += 4;
  114. ref16 += 4;
  115. }
  116. }
  117. static void ssim_4x4xn_8bit(const uint8_t *main, ptrdiff_t main_stride,
  118. const uint8_t *ref, ptrdiff_t ref_stride,
  119. int (*sums)[4], int width)
  120. {
  121. int x, y, z;
  122. for (z = 0; z < width; z++) {
  123. uint32_t s1 = 0, s2 = 0, ss = 0, s12 = 0;
  124. for (y = 0; y < 4; y++) {
  125. for (x = 0; x < 4; x++) {
  126. int a = main[x + y * main_stride];
  127. int b = ref[x + y * ref_stride];
  128. s1 += a;
  129. s2 += b;
  130. ss += a*a;
  131. ss += b*b;
  132. s12 += a*b;
  133. }
  134. }
  135. sums[z][0] = s1;
  136. sums[z][1] = s2;
  137. sums[z][2] = ss;
  138. sums[z][3] = s12;
  139. main += 4;
  140. ref += 4;
  141. }
  142. }
  143. static float ssim_end1x(int64_t s1, int64_t s2, int64_t ss, int64_t s12, int max)
  144. {
  145. int64_t ssim_c1 = (int64_t)(.01*.01*max*max*64 + .5);
  146. int64_t ssim_c2 = (int64_t)(.03*.03*max*max*64*63 + .5);
  147. int64_t fs1 = s1;
  148. int64_t fs2 = s2;
  149. int64_t fss = ss;
  150. int64_t fs12 = s12;
  151. int64_t vars = fss * 64 - fs1 * fs1 - fs2 * fs2;
  152. int64_t covar = fs12 * 64 - fs1 * fs2;
  153. return (float)(2 * fs1 * fs2 + ssim_c1) * (float)(2 * covar + ssim_c2)
  154. / ((float)(fs1 * fs1 + fs2 * fs2 + ssim_c1) * (float)(vars + ssim_c2));
  155. }
  156. static float ssim_end1(int s1, int s2, int ss, int s12)
  157. {
  158. static const int ssim_c1 = (int)(.01*.01*255*255*64 + .5);
  159. static const int ssim_c2 = (int)(.03*.03*255*255*64*63 + .5);
  160. int fs1 = s1;
  161. int fs2 = s2;
  162. int fss = ss;
  163. int fs12 = s12;
  164. int vars = fss * 64 - fs1 * fs1 - fs2 * fs2;
  165. int covar = fs12 * 64 - fs1 * fs2;
  166. return (float)(2 * fs1 * fs2 + ssim_c1) * (float)(2 * covar + ssim_c2)
  167. / ((float)(fs1 * fs1 + fs2 * fs2 + ssim_c1) * (float)(vars + ssim_c2));
  168. }
  169. static float ssim_endn_16bit(const int64_t (*sum0)[4], const int64_t (*sum1)[4], int width, int max)
  170. {
  171. float ssim = 0.0;
  172. int i;
  173. for (i = 0; i < width; i++)
  174. ssim += ssim_end1x(sum0[i][0] + sum0[i + 1][0] + sum1[i][0] + sum1[i + 1][0],
  175. sum0[i][1] + sum0[i + 1][1] + sum1[i][1] + sum1[i + 1][1],
  176. sum0[i][2] + sum0[i + 1][2] + sum1[i][2] + sum1[i + 1][2],
  177. sum0[i][3] + sum0[i + 1][3] + sum1[i][3] + sum1[i + 1][3],
  178. max);
  179. return ssim;
  180. }
  181. static float ssim_endn_8bit(const int (*sum0)[4], const int (*sum1)[4], int width)
  182. {
  183. float ssim = 0.0;
  184. int i;
  185. for (i = 0; i < width; i++)
  186. ssim += ssim_end1(sum0[i][0] + sum0[i + 1][0] + sum1[i][0] + sum1[i + 1][0],
  187. sum0[i][1] + sum0[i + 1][1] + sum1[i][1] + sum1[i + 1][1],
  188. sum0[i][2] + sum0[i + 1][2] + sum1[i][2] + sum1[i + 1][2],
  189. sum0[i][3] + sum0[i + 1][3] + sum1[i][3] + sum1[i + 1][3]);
  190. return ssim;
  191. }
  192. #define SUM_LEN(w) (((w) >> 2) + 3)
  193. static float ssim_plane_16bit(SSIMDSPContext *dsp,
  194. uint8_t *main, int main_stride,
  195. uint8_t *ref, int ref_stride,
  196. int width, int height, void *temp,
  197. int max)
  198. {
  199. int z = 0, y;
  200. float ssim = 0.0;
  201. int64_t (*sum0)[4] = temp;
  202. int64_t (*sum1)[4] = sum0 + SUM_LEN(width);
  203. width >>= 2;
  204. height >>= 2;
  205. for (y = 1; y < height; y++) {
  206. for (; z <= y; z++) {
  207. FFSWAP(void*, sum0, sum1);
  208. ssim_4x4xn_16bit(&main[4 * z * main_stride], main_stride,
  209. &ref[4 * z * ref_stride], ref_stride,
  210. sum0, width);
  211. }
  212. ssim += ssim_endn_16bit((const int64_t (*)[4])sum0, (const int64_t (*)[4])sum1, width - 1, max);
  213. }
  214. return ssim / ((height - 1) * (width - 1));
  215. }
  216. static float ssim_plane(SSIMDSPContext *dsp,
  217. uint8_t *main, int main_stride,
  218. uint8_t *ref, int ref_stride,
  219. int width, int height, void *temp,
  220. int max)
  221. {
  222. int z = 0, y;
  223. float ssim = 0.0;
  224. int (*sum0)[4] = temp;
  225. int (*sum1)[4] = sum0 + SUM_LEN(width);
  226. width >>= 2;
  227. height >>= 2;
  228. for (y = 1; y < height; y++) {
  229. for (; z <= y; z++) {
  230. FFSWAP(void*, sum0, sum1);
  231. dsp->ssim_4x4_line(&main[4 * z * main_stride], main_stride,
  232. &ref[4 * z * ref_stride], ref_stride,
  233. sum0, width);
  234. }
  235. ssim += dsp->ssim_end_line((const int (*)[4])sum0, (const int (*)[4])sum1, width - 1);
  236. }
  237. return ssim / ((height - 1) * (width - 1));
  238. }
  239. static double ssim_db(double ssim, double weight)
  240. {
  241. return 10 * log10(weight / (weight - ssim));
  242. }
  243. static int do_ssim(FFFrameSync *fs)
  244. {
  245. AVFilterContext *ctx = fs->parent;
  246. SSIMContext *s = ctx->priv;
  247. AVFrame *master, *ref;
  248. AVDictionary **metadata;
  249. float c[4], ssimv = 0.0;
  250. int ret, i;
  251. ret = ff_framesync_dualinput_get(fs, &master, &ref);
  252. if (ret < 0)
  253. return ret;
  254. if (!ref)
  255. return ff_filter_frame(ctx->outputs[0], master);
  256. metadata = &master->metadata;
  257. s->nb_frames++;
  258. for (i = 0; i < s->nb_components; i++) {
  259. c[i] = s->ssim_plane(&s->dsp, master->data[i], master->linesize[i],
  260. ref->data[i], ref->linesize[i],
  261. s->planewidth[i], s->planeheight[i], s->temp,
  262. s->max);
  263. ssimv += s->coefs[i] * c[i];
  264. s->ssim[i] += c[i];
  265. }
  266. for (i = 0; i < s->nb_components; i++) {
  267. int cidx = s->is_rgb ? s->rgba_map[i] : i;
  268. set_meta(metadata, "lavfi.ssim.", s->comps[i], c[cidx]);
  269. }
  270. s->ssim_total += ssimv;
  271. set_meta(metadata, "lavfi.ssim.All", 0, ssimv);
  272. set_meta(metadata, "lavfi.ssim.dB", 0, ssim_db(ssimv, 1.0));
  273. if (s->stats_file) {
  274. fprintf(s->stats_file, "n:%"PRId64" ", s->nb_frames);
  275. for (i = 0; i < s->nb_components; i++) {
  276. int cidx = s->is_rgb ? s->rgba_map[i] : i;
  277. fprintf(s->stats_file, "%c:%f ", s->comps[i], c[cidx]);
  278. }
  279. fprintf(s->stats_file, "All:%f (%f)\n", ssimv, ssim_db(ssimv, 1.0));
  280. }
  281. return ff_filter_frame(ctx->outputs[0], master);
  282. }
  283. static av_cold int init(AVFilterContext *ctx)
  284. {
  285. SSIMContext *s = ctx->priv;
  286. if (s->stats_file_str) {
  287. if (!strcmp(s->stats_file_str, "-")) {
  288. s->stats_file = stdout;
  289. } else {
  290. s->stats_file = fopen(s->stats_file_str, "w");
  291. if (!s->stats_file) {
  292. int err = AVERROR(errno);
  293. char buf[128];
  294. av_strerror(err, buf, sizeof(buf));
  295. av_log(ctx, AV_LOG_ERROR, "Could not open stats file %s: %s\n",
  296. s->stats_file_str, buf);
  297. return err;
  298. }
  299. }
  300. }
  301. s->fs.on_event = do_ssim;
  302. return 0;
  303. }
  304. static int query_formats(AVFilterContext *ctx)
  305. {
  306. static const enum AVPixelFormat pix_fmts[] = {
  307. AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10,
  308. AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
  309. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
  310. AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
  311. AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
  312. AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
  313. AV_PIX_FMT_GBRP,
  314. #define PF(suf) AV_PIX_FMT_YUV420##suf, AV_PIX_FMT_YUV422##suf, AV_PIX_FMT_YUV444##suf, AV_PIX_FMT_GBR##suf
  315. PF(P9), PF(P10), PF(P12), PF(P14), PF(P16),
  316. AV_PIX_FMT_NONE
  317. };
  318. AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
  319. if (!fmts_list)
  320. return AVERROR(ENOMEM);
  321. return ff_set_common_formats(ctx, fmts_list);
  322. }
  323. static int config_input_ref(AVFilterLink *inlink)
  324. {
  325. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
  326. AVFilterContext *ctx = inlink->dst;
  327. SSIMContext *s = ctx->priv;
  328. int sum = 0, i;
  329. s->nb_components = desc->nb_components;
  330. if (ctx->inputs[0]->w != ctx->inputs[1]->w ||
  331. ctx->inputs[0]->h != ctx->inputs[1]->h) {
  332. av_log(ctx, AV_LOG_ERROR, "Width and height of input videos must be same.\n");
  333. return AVERROR(EINVAL);
  334. }
  335. if (ctx->inputs[0]->format != ctx->inputs[1]->format) {
  336. av_log(ctx, AV_LOG_ERROR, "Inputs must be of same pixel format.\n");
  337. return AVERROR(EINVAL);
  338. }
  339. s->is_rgb = ff_fill_rgba_map(s->rgba_map, inlink->format) >= 0;
  340. s->comps[0] = s->is_rgb ? 'R' : 'Y';
  341. s->comps[1] = s->is_rgb ? 'G' : 'U';
  342. s->comps[2] = s->is_rgb ? 'B' : 'V';
  343. s->comps[3] = 'A';
  344. s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
  345. s->planeheight[0] = s->planeheight[3] = inlink->h;
  346. s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
  347. s->planewidth[0] = s->planewidth[3] = inlink->w;
  348. for (i = 0; i < s->nb_components; i++)
  349. sum += s->planeheight[i] * s->planewidth[i];
  350. for (i = 0; i < s->nb_components; i++)
  351. s->coefs[i] = (double) s->planeheight[i] * s->planewidth[i] / sum;
  352. s->temp = av_mallocz_array(2 * SUM_LEN(inlink->w), (desc->comp[0].depth > 8) ? sizeof(int64_t[4]) : sizeof(int[4]));
  353. if (!s->temp)
  354. return AVERROR(ENOMEM);
  355. s->max = (1 << desc->comp[0].depth) - 1;
  356. s->ssim_plane = desc->comp[0].depth > 8 ? ssim_plane_16bit : ssim_plane;
  357. s->dsp.ssim_4x4_line = ssim_4x4xn_8bit;
  358. s->dsp.ssim_end_line = ssim_endn_8bit;
  359. if (ARCH_X86)
  360. ff_ssim_init_x86(&s->dsp);
  361. return 0;
  362. }
  363. static int config_output(AVFilterLink *outlink)
  364. {
  365. AVFilterContext *ctx = outlink->src;
  366. SSIMContext *s = ctx->priv;
  367. AVFilterLink *mainlink = ctx->inputs[0];
  368. int ret;
  369. ret = ff_framesync_init_dualinput(&s->fs, ctx);
  370. if (ret < 0)
  371. return ret;
  372. outlink->w = mainlink->w;
  373. outlink->h = mainlink->h;
  374. outlink->time_base = mainlink->time_base;
  375. outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio;
  376. outlink->frame_rate = mainlink->frame_rate;
  377. if ((ret = ff_framesync_configure(&s->fs)) < 0)
  378. return ret;
  379. return 0;
  380. }
  381. static int activate(AVFilterContext *ctx)
  382. {
  383. SSIMContext *s = ctx->priv;
  384. return ff_framesync_activate(&s->fs);
  385. }
  386. static av_cold void uninit(AVFilterContext *ctx)
  387. {
  388. SSIMContext *s = ctx->priv;
  389. if (s->nb_frames > 0) {
  390. char buf[256];
  391. int i;
  392. buf[0] = 0;
  393. for (i = 0; i < s->nb_components; i++) {
  394. int c = s->is_rgb ? s->rgba_map[i] : i;
  395. av_strlcatf(buf, sizeof(buf), " %c:%f (%f)", s->comps[i], s->ssim[c] / s->nb_frames,
  396. ssim_db(s->ssim[c], s->nb_frames));
  397. }
  398. av_log(ctx, AV_LOG_INFO, "SSIM%s All:%f (%f)\n", buf,
  399. s->ssim_total / s->nb_frames, ssim_db(s->ssim_total, s->nb_frames));
  400. }
  401. ff_framesync_uninit(&s->fs);
  402. if (s->stats_file && s->stats_file != stdout)
  403. fclose(s->stats_file);
  404. av_freep(&s->temp);
  405. }
  406. static const AVFilterPad ssim_inputs[] = {
  407. {
  408. .name = "main",
  409. .type = AVMEDIA_TYPE_VIDEO,
  410. },{
  411. .name = "reference",
  412. .type = AVMEDIA_TYPE_VIDEO,
  413. .config_props = config_input_ref,
  414. },
  415. { NULL }
  416. };
  417. static const AVFilterPad ssim_outputs[] = {
  418. {
  419. .name = "default",
  420. .type = AVMEDIA_TYPE_VIDEO,
  421. .config_props = config_output,
  422. },
  423. { NULL }
  424. };
  425. AVFilter ff_vf_ssim = {
  426. .name = "ssim",
  427. .description = NULL_IF_CONFIG_SMALL("Calculate the SSIM between two video streams."),
  428. .preinit = ssim_framesync_preinit,
  429. .init = init,
  430. .uninit = uninit,
  431. .query_formats = query_formats,
  432. .activate = activate,
  433. .priv_size = sizeof(SSIMContext),
  434. .priv_class = &ssim_class,
  435. .inputs = ssim_inputs,
  436. .outputs = ssim_outputs,
  437. };