sha.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. /*
  2. * Copyright (C) 2007 Michael Niedermayer <michaelni@gmx.at>
  3. * Copyright (C) 2009 Konstantin Shishkov
  4. * based on public domain SHA-1 code by Steve Reid <steve@edmweb.com>
  5. * and on BSD-licensed SHA-2 code by Aaron D. Gifford
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <string.h>
  24. #include "attributes.h"
  25. #include "avutil.h"
  26. #include "bswap.h"
  27. #include "sha.h"
  28. #include "intreadwrite.h"
  29. #include "mem.h"
  30. /** hash context */
  31. typedef struct AVSHA {
  32. uint8_t digest_len; ///< digest length in 32-bit words
  33. uint64_t count; ///< number of bytes in buffer
  34. uint8_t buffer[64]; ///< 512-bit buffer of input values used in hash updating
  35. uint32_t state[8]; ///< current hash value
  36. /** function used to update hash for 512-bit input block */
  37. void (*transform)(uint32_t *state, const uint8_t buffer[64]);
  38. } AVSHA;
  39. const int av_sha_size = sizeof(AVSHA);
  40. struct AVSHA *av_sha_alloc(void)
  41. {
  42. return av_mallocz(sizeof(struct AVSHA));
  43. }
  44. #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
  45. /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
  46. #define blk0(i) (block[i] = AV_RB32(buffer + 4 * (i)))
  47. #define blk(i) (block[i] = rol(block[(i)-3] ^ block[(i)-8] ^ block[(i)-14] ^ block[(i)-16], 1))
  48. #define R0(v,w,x,y,z,i) z += (((w)&((x)^(y)))^(y)) + blk0(i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
  49. #define R1(v,w,x,y,z,i) z += (((w)&((x)^(y)))^(y)) + blk (i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
  50. #define R2(v,w,x,y,z,i) z += ( (w)^(x) ^(y)) + blk (i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
  51. #define R3(v,w,x,y,z,i) z += ((((w)|(x))&(y))|((w)&(x))) + blk (i) + 0x8F1BBCDC + rol(v, 5); w = rol(w, 30);
  52. #define R4(v,w,x,y,z,i) z += ( (w)^(x) ^(y)) + blk (i) + 0xCA62C1D6 + rol(v, 5); w = rol(w, 30);
  53. /* Hash a single 512-bit block. This is the core of the algorithm. */
  54. static void sha1_transform(uint32_t state[5], const uint8_t buffer[64])
  55. {
  56. uint32_t block[80];
  57. unsigned int i, a, b, c, d, e;
  58. a = state[0];
  59. b = state[1];
  60. c = state[2];
  61. d = state[3];
  62. e = state[4];
  63. #if CONFIG_SMALL
  64. for (i = 0; i < 80; i++) {
  65. int t;
  66. if (i < 16)
  67. t = AV_RB32(buffer + 4 * i);
  68. else
  69. t = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1);
  70. block[i] = t;
  71. t += e + rol(a, 5);
  72. if (i < 40) {
  73. if (i < 20)
  74. t += ((b&(c^d))^d) + 0x5A827999;
  75. else
  76. t += ( b^c ^d) + 0x6ED9EBA1;
  77. } else {
  78. if (i < 60)
  79. t += (((b|c)&d)|(b&c)) + 0x8F1BBCDC;
  80. else
  81. t += ( b^c ^d) + 0xCA62C1D6;
  82. }
  83. e = d;
  84. d = c;
  85. c = rol(b, 30);
  86. b = a;
  87. a = t;
  88. }
  89. #else
  90. #define R1_0 \
  91. R0(a, b, c, d, e, 0 + i); \
  92. R0(e, a, b, c, d, 1 + i); \
  93. R0(d, e, a, b, c, 2 + i); \
  94. R0(c, d, e, a, b, 3 + i); \
  95. R0(b, c, d, e, a, 4 + i); \
  96. i += 5
  97. i = 0;
  98. R1_0; R1_0; R1_0;
  99. R0(a, b, c, d, e, 15);
  100. R1(e, a, b, c, d, 16);
  101. R1(d, e, a, b, c, 17);
  102. R1(c, d, e, a, b, 18);
  103. R1(b, c, d, e, a, 19);
  104. #define R1_20 \
  105. R2(a, b, c, d, e, 0 + i); \
  106. R2(e, a, b, c, d, 1 + i); \
  107. R2(d, e, a, b, c, 2 + i); \
  108. R2(c, d, e, a, b, 3 + i); \
  109. R2(b, c, d, e, a, 4 + i); \
  110. i += 5
  111. i = 20;
  112. R1_20; R1_20; R1_20; R1_20;
  113. #define R1_40 \
  114. R3(a, b, c, d, e, 0 + i); \
  115. R3(e, a, b, c, d, 1 + i); \
  116. R3(d, e, a, b, c, 2 + i); \
  117. R3(c, d, e, a, b, 3 + i); \
  118. R3(b, c, d, e, a, 4 + i); \
  119. i += 5
  120. R1_40; R1_40; R1_40; R1_40;
  121. #define R1_60 \
  122. R4(a, b, c, d, e, 0 + i); \
  123. R4(e, a, b, c, d, 1 + i); \
  124. R4(d, e, a, b, c, 2 + i); \
  125. R4(c, d, e, a, b, 3 + i); \
  126. R4(b, c, d, e, a, 4 + i); \
  127. i += 5
  128. R1_60; R1_60; R1_60; R1_60;
  129. #endif
  130. state[0] += a;
  131. state[1] += b;
  132. state[2] += c;
  133. state[3] += d;
  134. state[4] += e;
  135. }
  136. static const uint32_t K256[64] = {
  137. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  138. 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  139. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  140. 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  141. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  142. 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  143. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  144. 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  145. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  146. 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  147. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  148. 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  149. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  150. 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  151. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  152. 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  153. };
  154. #define Ch(x,y,z) (((x) & ((y) ^ (z))) ^ (z))
  155. #define Maj(z,y,x) ((((x) | (y)) & (z)) | ((x) & (y)))
  156. #define Sigma0_256(x) (rol((x), 30) ^ rol((x), 19) ^ rol((x), 10))
  157. #define Sigma1_256(x) (rol((x), 26) ^ rol((x), 21) ^ rol((x), 7))
  158. #define sigma0_256(x) (rol((x), 25) ^ rol((x), 14) ^ ((x) >> 3))
  159. #define sigma1_256(x) (rol((x), 15) ^ rol((x), 13) ^ ((x) >> 10))
  160. #undef blk
  161. #define blk(i) (block[i] = block[i - 16] + sigma0_256(block[i - 15]) + \
  162. sigma1_256(block[i - 2]) + block[i - 7])
  163. #define ROUND256(a,b,c,d,e,f,g,h) \
  164. T1 += (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[i]; \
  165. (d) += T1; \
  166. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  167. i++
  168. #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
  169. T1 = blk0(i); \
  170. ROUND256(a,b,c,d,e,f,g,h)
  171. #define ROUND256_16_TO_63(a,b,c,d,e,f,g,h) \
  172. T1 = blk(i); \
  173. ROUND256(a,b,c,d,e,f,g,h)
  174. static void sha256_transform(uint32_t *state, const uint8_t buffer[64])
  175. {
  176. unsigned int i, a, b, c, d, e, f, g, h;
  177. uint32_t block[64];
  178. uint32_t T1;
  179. a = state[0];
  180. b = state[1];
  181. c = state[2];
  182. d = state[3];
  183. e = state[4];
  184. f = state[5];
  185. g = state[6];
  186. h = state[7];
  187. #if CONFIG_SMALL
  188. for (i = 0; i < 64; i++) {
  189. uint32_t T2;
  190. if (i < 16)
  191. T1 = blk0(i);
  192. else
  193. T1 = blk(i);
  194. T1 += h + Sigma1_256(e) + Ch(e, f, g) + K256[i];
  195. T2 = Sigma0_256(a) + Maj(a, b, c);
  196. h = g;
  197. g = f;
  198. f = e;
  199. e = d + T1;
  200. d = c;
  201. c = b;
  202. b = a;
  203. a = T1 + T2;
  204. }
  205. #else
  206. i = 0;
  207. #define R256_0 \
  208. ROUND256_0_TO_15(a, b, c, d, e, f, g, h); \
  209. ROUND256_0_TO_15(h, a, b, c, d, e, f, g); \
  210. ROUND256_0_TO_15(g, h, a, b, c, d, e, f); \
  211. ROUND256_0_TO_15(f, g, h, a, b, c, d, e); \
  212. ROUND256_0_TO_15(e, f, g, h, a, b, c, d); \
  213. ROUND256_0_TO_15(d, e, f, g, h, a, b, c); \
  214. ROUND256_0_TO_15(c, d, e, f, g, h, a, b); \
  215. ROUND256_0_TO_15(b, c, d, e, f, g, h, a)
  216. R256_0; R256_0;
  217. #define R256_16 \
  218. ROUND256_16_TO_63(a, b, c, d, e, f, g, h); \
  219. ROUND256_16_TO_63(h, a, b, c, d, e, f, g); \
  220. ROUND256_16_TO_63(g, h, a, b, c, d, e, f); \
  221. ROUND256_16_TO_63(f, g, h, a, b, c, d, e); \
  222. ROUND256_16_TO_63(e, f, g, h, a, b, c, d); \
  223. ROUND256_16_TO_63(d, e, f, g, h, a, b, c); \
  224. ROUND256_16_TO_63(c, d, e, f, g, h, a, b); \
  225. ROUND256_16_TO_63(b, c, d, e, f, g, h, a)
  226. R256_16; R256_16; R256_16;
  227. R256_16; R256_16; R256_16;
  228. #endif
  229. state[0] += a;
  230. state[1] += b;
  231. state[2] += c;
  232. state[3] += d;
  233. state[4] += e;
  234. state[5] += f;
  235. state[6] += g;
  236. state[7] += h;
  237. }
  238. av_cold int av_sha_init(AVSHA *ctx, int bits)
  239. {
  240. ctx->digest_len = bits >> 5;
  241. switch (bits) {
  242. case 160: // SHA-1
  243. ctx->state[0] = 0x67452301;
  244. ctx->state[1] = 0xEFCDAB89;
  245. ctx->state[2] = 0x98BADCFE;
  246. ctx->state[3] = 0x10325476;
  247. ctx->state[4] = 0xC3D2E1F0;
  248. ctx->transform = sha1_transform;
  249. break;
  250. case 224: // SHA-224
  251. ctx->state[0] = 0xC1059ED8;
  252. ctx->state[1] = 0x367CD507;
  253. ctx->state[2] = 0x3070DD17;
  254. ctx->state[3] = 0xF70E5939;
  255. ctx->state[4] = 0xFFC00B31;
  256. ctx->state[5] = 0x68581511;
  257. ctx->state[6] = 0x64F98FA7;
  258. ctx->state[7] = 0xBEFA4FA4;
  259. ctx->transform = sha256_transform;
  260. break;
  261. case 256: // SHA-256
  262. ctx->state[0] = 0x6A09E667;
  263. ctx->state[1] = 0xBB67AE85;
  264. ctx->state[2] = 0x3C6EF372;
  265. ctx->state[3] = 0xA54FF53A;
  266. ctx->state[4] = 0x510E527F;
  267. ctx->state[5] = 0x9B05688C;
  268. ctx->state[6] = 0x1F83D9AB;
  269. ctx->state[7] = 0x5BE0CD19;
  270. ctx->transform = sha256_transform;
  271. break;
  272. default:
  273. return AVERROR(EINVAL);
  274. }
  275. ctx->count = 0;
  276. return 0;
  277. }
  278. #if FF_API_CRYPTO_SIZE_T
  279. void av_sha_update(struct AVSHA *ctx, const uint8_t *data, unsigned int len)
  280. #else
  281. void av_sha_update(struct AVSHA *ctx, const uint8_t *data, size_t len)
  282. #endif
  283. {
  284. unsigned int i, j;
  285. j = ctx->count & 63;
  286. ctx->count += len;
  287. #if CONFIG_SMALL
  288. for (i = 0; i < len; i++) {
  289. ctx->buffer[j++] = data[i];
  290. if (64 == j) {
  291. ctx->transform(ctx->state, ctx->buffer);
  292. j = 0;
  293. }
  294. }
  295. #else
  296. if ((j + len) > 63) {
  297. memcpy(&ctx->buffer[j], data, (i = 64 - j));
  298. ctx->transform(ctx->state, ctx->buffer);
  299. for (; i + 63 < len; i += 64)
  300. ctx->transform(ctx->state, &data[i]);
  301. j = 0;
  302. } else
  303. i = 0;
  304. memcpy(&ctx->buffer[j], &data[i], len - i);
  305. #endif
  306. }
  307. void av_sha_final(AVSHA* ctx, uint8_t *digest)
  308. {
  309. int i;
  310. uint64_t finalcount = av_be2ne64(ctx->count << 3);
  311. av_sha_update(ctx, "\200", 1);
  312. while ((ctx->count & 63) != 56)
  313. av_sha_update(ctx, "", 1);
  314. av_sha_update(ctx, (uint8_t *)&finalcount, 8); /* Should cause a transform() */
  315. for (i = 0; i < ctx->digest_len; i++)
  316. AV_WB32(digest + i*4, ctx->state[i]);
  317. }