/* * cipher.c * * cipher meta-functions * * David A. McGrew * Cisco Systems, Inc. * */ /* * * Copyright (c) 2001-2006,2013 Cisco Systems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "cipher.h" #include "crypto_types.h" #include "rand_source.h" /* used in invertibiltiy tests */ #include "alloc.h" /* for crypto_alloc(), crypto_free() */ debug_module_t mod_cipher = { 0, /* debugging is off by default */ "cipher" /* printable module name */ }; err_status_t cipher_output(cipher_t *c, uint8_t *buffer, int num_octets_to_output) { /* zeroize the buffer */ octet_string_set_to_zero(buffer, num_octets_to_output); /* exor keystream into buffer */ return cipher_encrypt(c, buffer, (unsigned int *) &num_octets_to_output); } /* some bookkeeping functions */ int cipher_get_key_length(const cipher_t *c) { return c->key_len; } /* * cipher_type_test(ct, test_data) tests a cipher of type ct against * test cases provided in a list test_data of values of key, salt, iv, * plaintext, and ciphertext that is known to be good */ #define SELF_TEST_BUF_OCTETS 128 #define NUM_RAND_TESTS 128 #define MAX_KEY_LEN 64 err_status_t cipher_type_test(const cipher_type_t *ct, const cipher_test_case_t *test_data) { const cipher_test_case_t *test_case = test_data; cipher_t *c; err_status_t status; uint8_t buffer[SELF_TEST_BUF_OCTETS]; uint8_t buffer2[SELF_TEST_BUF_OCTETS]; int tag_len; unsigned int len; int i, j, case_num = 0; debug_print(mod_cipher, "running self-test for cipher %s", ct->description); /* * check to make sure that we have at least one test case, and * return an error if we don't - we need to be paranoid here */ if (test_case == NULL) return err_status_cant_check; /* * loop over all test cases, perform known-answer tests of both the * encryption and decryption functions */ while (test_case != NULL) { /* allocate cipher */ status = cipher_type_alloc(ct, &c, test_case->key_length_octets, test_case->tag_length_octets); if (status) return status; /* * test the encrypt function */ debug_print(mod_cipher, "testing encryption", NULL); /* initialize cipher */ status = cipher_init(c, test_case->key); if (status) { cipher_dealloc(c); return status; } /* copy plaintext into test buffer */ if (test_case->ciphertext_length_octets > SELF_TEST_BUF_OCTETS) { cipher_dealloc(c); return err_status_bad_param; } for (i=0; i < test_case->plaintext_length_octets; i++) buffer[i] = test_case->plaintext[i]; debug_print(mod_cipher, "plaintext: %s", octet_string_hex_string(buffer, test_case->plaintext_length_octets)); /* set the initialization vector */ status = cipher_set_iv(c, test_case->idx, direction_encrypt); if (status) { cipher_dealloc(c); return status; } if (c->algorithm == AES_128_GCM || c->algorithm == AES_256_GCM) { debug_print(mod_cipher, "IV: %s", octet_string_hex_string(test_case->idx, 12)); /* * Set the AAD */ status = cipher_set_aad(c, test_case->aad, test_case->aad_length_octets); if (status) { cipher_dealloc(c); return status; } debug_print(mod_cipher, "AAD: %s", octet_string_hex_string(test_case->aad, test_case->aad_length_octets)); } /* encrypt */ len = test_case->plaintext_length_octets; status = cipher_encrypt(c, buffer, &len); if (status) { cipher_dealloc(c); return status; } if (c->algorithm == AES_128_GCM || c->algorithm == AES_256_GCM) { /* * Get the GCM tag */ status = cipher_get_tag(c, buffer + len, &tag_len); if (status) { cipher_dealloc(c); return status; } len += tag_len; } debug_print(mod_cipher, "ciphertext: %s", octet_string_hex_string(buffer, test_case->ciphertext_length_octets)); /* compare the resulting ciphertext with that in the test case */ if (len != (unsigned int)test_case->ciphertext_length_octets) return err_status_algo_fail; status = err_status_ok; for (i=0; i < test_case->ciphertext_length_octets; i++) if (buffer[i] != test_case->ciphertext[i]) { status = err_status_algo_fail; debug_print(mod_cipher, "test case %d failed", case_num); debug_print(mod_cipher, "(failure at byte %d)", i); break; } if (status) { debug_print(mod_cipher, "c computed: %s", octet_string_hex_string(buffer, 2*test_case->plaintext_length_octets)); debug_print(mod_cipher, "c expected: %s", octet_string_hex_string(test_case->ciphertext, 2*test_case->plaintext_length_octets)); cipher_dealloc(c); return err_status_algo_fail; } /* * test the decrypt function */ debug_print(mod_cipher, "testing decryption", NULL); /* re-initialize cipher for decryption */ status = cipher_init(c, test_case->key); if (status) { cipher_dealloc(c); return status; } /* copy ciphertext into test buffer */ if (test_case->ciphertext_length_octets > SELF_TEST_BUF_OCTETS) { cipher_dealloc(c); return err_status_bad_param; } for (i=0; i < test_case->ciphertext_length_octets; i++) buffer[i] = test_case->ciphertext[i]; debug_print(mod_cipher, "ciphertext: %s", octet_string_hex_string(buffer, test_case->plaintext_length_octets)); /* set the initialization vector */ status = cipher_set_iv(c, test_case->idx, direction_decrypt); if (status) { cipher_dealloc(c); return status; } if (c->algorithm == AES_128_GCM || c->algorithm == AES_256_GCM) { /* * Set the AAD */ status = cipher_set_aad(c, test_case->aad, test_case->aad_length_octets); if (status) { cipher_dealloc(c); return status; } debug_print(mod_cipher, "AAD: %s", octet_string_hex_string(test_case->aad, test_case->aad_length_octets)); } /* decrypt */ len = test_case->ciphertext_length_octets; status = cipher_decrypt(c, buffer, &len); if (status) { cipher_dealloc(c); return status; } debug_print(mod_cipher, "plaintext: %s", octet_string_hex_string(buffer, test_case->plaintext_length_octets)); /* compare the resulting plaintext with that in the test case */ if (len != (unsigned int)test_case->plaintext_length_octets) return err_status_algo_fail; status = err_status_ok; for (i=0; i < test_case->plaintext_length_octets; i++) if (buffer[i] != test_case->plaintext[i]) { status = err_status_algo_fail; debug_print(mod_cipher, "test case %d failed", case_num); debug_print(mod_cipher, "(failure at byte %d)", i); } if (status) { debug_print(mod_cipher, "p computed: %s", octet_string_hex_string(buffer, 2*test_case->plaintext_length_octets)); debug_print(mod_cipher, "p expected: %s", octet_string_hex_string(test_case->plaintext, 2*test_case->plaintext_length_octets)); cipher_dealloc(c); return err_status_algo_fail; } /* deallocate the cipher */ status = cipher_dealloc(c); if (status) return status; /* * the cipher passed the test case, so move on to the next test * case in the list; if NULL, we'l proceed to the next test */ test_case = test_case->next_test_case; ++case_num; } /* now run some random invertibility tests */ /* allocate cipher, using paramaters from the first test case */ test_case = test_data; status = cipher_type_alloc(ct, &c, test_case->key_length_octets, test_case->tag_length_octets); if (status) return status; rand_source_init(); for (j=0; j < NUM_RAND_TESTS; j++) { unsigned length; int plaintext_len; uint8_t key[MAX_KEY_LEN]; uint8_t iv[MAX_KEY_LEN]; /* choose a length at random (leaving room for IV and padding) */ length = rand() % (SELF_TEST_BUF_OCTETS - 64); debug_print(mod_cipher, "random plaintext length %d\n", length); status = rand_source_get_octet_string(buffer, length); if (status) return status; debug_print(mod_cipher, "plaintext: %s", octet_string_hex_string(buffer, length)); /* copy plaintext into second buffer */ for (i=0; (unsigned int)i < length; i++) buffer2[i] = buffer[i]; /* choose a key at random */ if (test_case->key_length_octets > MAX_KEY_LEN) return err_status_cant_check; status = rand_source_get_octet_string(key, test_case->key_length_octets); if (status) return status; /* chose a random initialization vector */ status = rand_source_get_octet_string(iv, MAX_KEY_LEN); if (status) return status; /* initialize cipher */ status = cipher_init(c, key); if (status) { cipher_dealloc(c); return status; } /* set initialization vector */ status = cipher_set_iv(c, test_case->idx, direction_encrypt); if (status) { cipher_dealloc(c); return status; } if (c->algorithm == AES_128_GCM || c->algorithm == AES_256_GCM) { /* * Set the AAD */ status = cipher_set_aad(c, test_case->aad, test_case->aad_length_octets); if (status) { cipher_dealloc(c); return status; } debug_print(mod_cipher, "AAD: %s", octet_string_hex_string(test_case->aad, test_case->aad_length_octets)); } /* encrypt buffer with cipher */ plaintext_len = length; status = cipher_encrypt(c, buffer, &length); if (status) { cipher_dealloc(c); return status; } if (c->algorithm == AES_128_GCM || c->algorithm == AES_256_GCM) { /* * Get the GCM tag */ status = cipher_get_tag(c, buffer + length, &tag_len); if (status) { cipher_dealloc(c); return status; } length += tag_len; } debug_print(mod_cipher, "ciphertext: %s", octet_string_hex_string(buffer, length)); /* * re-initialize cipher for decryption, re-set the iv, then * decrypt the ciphertext */ status = cipher_init(c, key); if (status) { cipher_dealloc(c); return status; } status = cipher_set_iv(c, test_case->idx, direction_decrypt); if (status) { cipher_dealloc(c); return status; } if (c->algorithm == AES_128_GCM || c->algorithm == AES_256_GCM) { /* * Set the AAD */ status = cipher_set_aad(c, test_case->aad, test_case->aad_length_octets); if (status) { cipher_dealloc(c); return status; } debug_print(mod_cipher, "AAD: %s", octet_string_hex_string(test_case->aad, test_case->aad_length_octets)); } status = cipher_decrypt(c, buffer, &length); if (status) { cipher_dealloc(c); return status; } debug_print(mod_cipher, "plaintext[2]: %s", octet_string_hex_string(buffer, length)); /* compare the resulting plaintext with the original one */ if (length != (unsigned int)plaintext_len) { return err_status_algo_fail; } status = err_status_ok; for (i=0; i < plaintext_len; i++) if (buffer[i] != buffer2[i]) { status = err_status_algo_fail; debug_print(mod_cipher, "random test case %d failed", case_num); debug_print(mod_cipher, "(failure at byte %d)", i); } if (status) { cipher_dealloc(c); return err_status_algo_fail; } } status = cipher_dealloc(c); if (status) return status; return err_status_ok; } /* * cipher_type_self_test(ct) performs cipher_type_test on ct's internal * list of test data. */ err_status_t cipher_type_self_test(const cipher_type_t *ct) { return cipher_type_test(ct, ct->test_data); } /* * cipher_bits_per_second(c, l, t) computes (an estimate of) the * number of bits that a cipher implementation can encrypt in a second * * c is a cipher (which MUST be allocated and initialized already), l * is the length in octets of the test data to be encrypted, and t is * the number of trials * * if an error is encountered, the value 0 is returned */ uint64_t cipher_bits_per_second(cipher_t *c, int octets_in_buffer, int num_trials) { int i; v128_t nonce; clock_t timer; unsigned char *enc_buf; unsigned int len = octets_in_buffer; enc_buf = (unsigned char*) crypto_alloc(octets_in_buffer); if (enc_buf == NULL) return 0; /* indicate bad parameters by returning null */ /* time repeated trials */ v128_set_to_zero(&nonce); timer = clock(); for(i=0; i < num_trials; i++, nonce.v32[3] = i) { cipher_set_iv(c, &nonce, direction_encrypt); cipher_encrypt(c, enc_buf, &len); } timer = clock() - timer; crypto_free(enc_buf); if (timer == 0) { /* Too fast! */ return 0; } return (uint64_t)CLOCKS_PER_SEC * num_trials * 8 * octets_in_buffer / timer; }