2
0

bsdqueue.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. /* $OpenBSD: queue.h,v 1.31 2005/11/25 08:06:25 otto Exp $ */
  2. /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
  3. /*
  4. * Copyright (c) 1991, 1993
  5. * The Regents of the University of California. All rights reserved.
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions
  9. * are met:
  10. * 1. Redistributions of source code must retain the above copyright
  11. * notice, this list of conditions and the following disclaimer.
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in the
  14. * documentation and/or other materials provided with the distribution.
  15. * 3. Neither the name of the University nor the names of its contributors
  16. * may be used to endorse or promote products derived from this software
  17. * without specific prior written permission.
  18. *
  19. * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  20. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  21. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  22. * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  23. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  24. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  25. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  26. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  27. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  28. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  29. * SUCH DAMAGE.
  30. *
  31. * @(#)queue.h 8.5 (Berkeley) 8/20/94
  32. */
  33. #ifndef _SYS_QUEUE_H_
  34. #define _SYS_QUEUE_H_
  35. /*
  36. * This file defines five types of data structures: singly-linked lists,
  37. * lists, simple queues, tail queues, and circular queues.
  38. *
  39. *
  40. * A singly-linked list is headed by a single forward pointer. The elements
  41. * are singly linked for minimum space and pointer manipulation overhead at
  42. * the expense of O(n) removal for arbitrary elements. New elements can be
  43. * added to the list after an existing element or at the head of the list.
  44. * Elements being removed from the head of the list should use the explicit
  45. * macro for this purpose for optimum efficiency. A singly-linked list may
  46. * only be traversed in the forward direction. Singly-linked lists are ideal
  47. * for applications with large datasets and few or no removals or for
  48. * implementing a LIFO queue.
  49. *
  50. * A list is headed by a single forward pointer (or an array of forward
  51. * pointers for a hash table header). The elements are doubly linked
  52. * so that an arbitrary element can be removed without a need to
  53. * traverse the list. New elements can be added to the list before
  54. * or after an existing element or at the head of the list. A list
  55. * may only be traversed in the forward direction.
  56. *
  57. * A simple queue is headed by a pair of pointers, one the head of the
  58. * list and the other to the tail of the list. The elements are singly
  59. * linked to save space, so elements can only be removed from the
  60. * head of the list. New elements can be added to the list before or after
  61. * an existing element, at the head of the list, or at the end of the
  62. * list. A simple queue may only be traversed in the forward direction.
  63. *
  64. * A tail queue is headed by a pair of pointers, one to the head of the
  65. * list and the other to the tail of the list. The elements are doubly
  66. * linked so that an arbitrary element can be removed without a need to
  67. * traverse the list. New elements can be added to the list before or
  68. * after an existing element, at the head of the list, or at the end of
  69. * the list. A tail queue may be traversed in either direction.
  70. *
  71. * A circle queue is headed by a pair of pointers, one to the head of the
  72. * list and the other to the tail of the list. The elements are doubly
  73. * linked so that an arbitrary element can be removed without a need to
  74. * traverse the list. New elements can be added to the list before or after
  75. * an existing element, at the head of the list, or at the end of the list.
  76. * A circle queue may be traversed in either direction, but has a more
  77. * complex end of list detection.
  78. *
  79. * For details on the use of these macros, see the queue(3) manual page.
  80. */
  81. #ifdef QUEUE_MACRO_DEBUG
  82. #define _Q_INVALIDATE(a) (a) = ((void *)-1)
  83. #else
  84. #define _Q_INVALIDATE(a)
  85. #endif
  86. /*
  87. * Singly-linked List definitions.
  88. */
  89. #define SLIST_HEAD(name, type) \
  90. struct name { \
  91. struct type *slh_first; /* first element */ \
  92. }
  93. #define SLIST_HEAD_INITIALIZER(head) \
  94. { NULL }
  95. #ifdef SLIST_ENTRY
  96. #undef SLIST_ENTRY
  97. #endif
  98. #define SLIST_ENTRY(type) \
  99. struct { \
  100. struct type *sle_next; /* next element */ \
  101. }
  102. /*
  103. * Singly-linked List access methods.
  104. */
  105. #define SLIST_FIRST(head) ((head)->slh_first)
  106. #define SLIST_END(head) NULL
  107. #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
  108. #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
  109. #define SLIST_FOREACH(var, head, field) \
  110. for((var) = SLIST_FIRST(head); \
  111. (var) != SLIST_END(head); \
  112. (var) = SLIST_NEXT(var, field))
  113. #define SLIST_FOREACH_PREVPTR(var, varp, head, field) \
  114. for ((varp) = &SLIST_FIRST((head)); \
  115. ((var) = *(varp)) != SLIST_END(head); \
  116. (varp) = &SLIST_NEXT((var), field))
  117. /*
  118. * Singly-linked List functions.
  119. */
  120. #define SLIST_INIT(head) { \
  121. SLIST_FIRST(head) = SLIST_END(head); \
  122. }
  123. #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
  124. (elm)->field.sle_next = (slistelm)->field.sle_next; \
  125. (slistelm)->field.sle_next = (elm); \
  126. } while (0)
  127. #define SLIST_INSERT_HEAD(head, elm, field) do { \
  128. (elm)->field.sle_next = (head)->slh_first; \
  129. (head)->slh_first = (elm); \
  130. } while (0)
  131. #define SLIST_REMOVE_NEXT(head, elm, field) do { \
  132. (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
  133. } while (0)
  134. #define SLIST_REMOVE_HEAD(head, field) do { \
  135. (head)->slh_first = (head)->slh_first->field.sle_next; \
  136. } while (0)
  137. #define SLIST_REMOVE(head, elm, type, field) do { \
  138. if ((head)->slh_first == (elm)) { \
  139. SLIST_REMOVE_HEAD((head), field); \
  140. } else { \
  141. struct type *curelm = (head)->slh_first; \
  142. \
  143. while (curelm->field.sle_next != (elm)) \
  144. curelm = curelm->field.sle_next; \
  145. curelm->field.sle_next = \
  146. curelm->field.sle_next->field.sle_next; \
  147. _Q_INVALIDATE((elm)->field.sle_next); \
  148. } \
  149. } while (0)
  150. /*
  151. * List definitions.
  152. */
  153. #define LIST_HEAD(name, type) \
  154. struct name { \
  155. struct type *lh_first; /* first element */ \
  156. }
  157. #define LIST_HEAD_INITIALIZER(head) \
  158. { NULL }
  159. #define LIST_ENTRY(type) \
  160. struct { \
  161. struct type *le_next; /* next element */ \
  162. struct type **le_prev; /* address of previous next element */ \
  163. }
  164. /*
  165. * List access methods
  166. */
  167. #define LIST_FIRST(head) ((head)->lh_first)
  168. #define LIST_END(head) NULL
  169. #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
  170. #define LIST_NEXT(elm, field) ((elm)->field.le_next)
  171. #define LIST_FOREACH(var, head, field) \
  172. for((var) = LIST_FIRST(head); \
  173. (var)!= LIST_END(head); \
  174. (var) = LIST_NEXT(var, field))
  175. /*
  176. * List functions.
  177. */
  178. #define LIST_INIT(head) do { \
  179. LIST_FIRST(head) = LIST_END(head); \
  180. } while (0)
  181. #define LIST_INSERT_AFTER(listelm, elm, field) do { \
  182. if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
  183. (listelm)->field.le_next->field.le_prev = \
  184. &(elm)->field.le_next; \
  185. (listelm)->field.le_next = (elm); \
  186. (elm)->field.le_prev = &(listelm)->field.le_next; \
  187. } while (0)
  188. #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
  189. (elm)->field.le_prev = (listelm)->field.le_prev; \
  190. (elm)->field.le_next = (listelm); \
  191. *(listelm)->field.le_prev = (elm); \
  192. (listelm)->field.le_prev = &(elm)->field.le_next; \
  193. } while (0)
  194. #define LIST_INSERT_HEAD(head, elm, field) do { \
  195. if (((elm)->field.le_next = (head)->lh_first) != NULL) \
  196. (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
  197. (head)->lh_first = (elm); \
  198. (elm)->field.le_prev = &(head)->lh_first; \
  199. } while (0)
  200. #define LIST_REMOVE(elm, field) do { \
  201. if ((elm)->field.le_next != NULL) \
  202. (elm)->field.le_next->field.le_prev = \
  203. (elm)->field.le_prev; \
  204. *(elm)->field.le_prev = (elm)->field.le_next; \
  205. _Q_INVALIDATE((elm)->field.le_prev); \
  206. _Q_INVALIDATE((elm)->field.le_next); \
  207. } while (0)
  208. #define LIST_REPLACE(elm, elm2, field) do { \
  209. if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
  210. (elm2)->field.le_next->field.le_prev = \
  211. &(elm2)->field.le_next; \
  212. (elm2)->field.le_prev = (elm)->field.le_prev; \
  213. *(elm2)->field.le_prev = (elm2); \
  214. _Q_INVALIDATE((elm)->field.le_prev); \
  215. _Q_INVALIDATE((elm)->field.le_next); \
  216. } while (0)
  217. /*
  218. * Simple queue definitions.
  219. */
  220. #define SIMPLEQ_HEAD(name, type) \
  221. struct name { \
  222. struct type *sqh_first; /* first element */ \
  223. struct type **sqh_last; /* addr of last next element */ \
  224. }
  225. #define SIMPLEQ_HEAD_INITIALIZER(head) \
  226. { NULL, &(head).sqh_first }
  227. #define SIMPLEQ_ENTRY(type) \
  228. struct { \
  229. struct type *sqe_next; /* next element */ \
  230. }
  231. /*
  232. * Simple queue access methods.
  233. */
  234. #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
  235. #define SIMPLEQ_END(head) NULL
  236. #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
  237. #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
  238. #define SIMPLEQ_FOREACH(var, head, field) \
  239. for((var) = SIMPLEQ_FIRST(head); \
  240. (var) != SIMPLEQ_END(head); \
  241. (var) = SIMPLEQ_NEXT(var, field))
  242. /*
  243. * Simple queue functions.
  244. */
  245. #define SIMPLEQ_INIT(head) do { \
  246. (head)->sqh_first = NULL; \
  247. (head)->sqh_last = &(head)->sqh_first; \
  248. } while (0)
  249. #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
  250. if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
  251. (head)->sqh_last = &(elm)->field.sqe_next; \
  252. (head)->sqh_first = (elm); \
  253. } while (0)
  254. #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
  255. (elm)->field.sqe_next = NULL; \
  256. *(head)->sqh_last = (elm); \
  257. (head)->sqh_last = &(elm)->field.sqe_next; \
  258. } while (0)
  259. #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  260. if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
  261. (head)->sqh_last = &(elm)->field.sqe_next; \
  262. (listelm)->field.sqe_next = (elm); \
  263. } while (0)
  264. #define SIMPLEQ_REMOVE_HEAD(head, field) do { \
  265. if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
  266. (head)->sqh_last = &(head)->sqh_first; \
  267. } while (0)
  268. /*
  269. * Tail queue definitions.
  270. */
  271. #define TAILQ_HEAD(name, type) \
  272. struct name { \
  273. struct type *tqh_first; /* first element */ \
  274. struct type **tqh_last; /* addr of last next element */ \
  275. }
  276. #define TAILQ_HEAD_INITIALIZER(head) \
  277. { NULL, &(head).tqh_first }
  278. #define TAILQ_ENTRY(type) \
  279. struct { \
  280. struct type *tqe_next; /* next element */ \
  281. struct type **tqe_prev; /* address of previous next element */ \
  282. }
  283. /*
  284. * tail queue access methods
  285. */
  286. #define TAILQ_FIRST(head) ((head)->tqh_first)
  287. #define TAILQ_END(head) NULL
  288. #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
  289. #define TAILQ_LAST(head, headname) \
  290. (*(((struct headname *)((head)->tqh_last))->tqh_last))
  291. /* XXX */
  292. #define TAILQ_PREV(elm, headname, field) \
  293. (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
  294. #define TAILQ_EMPTY(head) \
  295. (TAILQ_FIRST(head) == TAILQ_END(head))
  296. #define TAILQ_FOREACH(var, head, field) \
  297. for((var) = TAILQ_FIRST(head); \
  298. (var) != TAILQ_END(head); \
  299. (var) = TAILQ_NEXT(var, field))
  300. #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
  301. for((var) = TAILQ_LAST(head, headname); \
  302. (var) != TAILQ_END(head); \
  303. (var) = TAILQ_PREV(var, headname, field))
  304. /*
  305. * Tail queue functions.
  306. */
  307. #define TAILQ_INIT(head) do { \
  308. (head)->tqh_first = NULL; \
  309. (head)->tqh_last = &(head)->tqh_first; \
  310. } while (0)
  311. #define TAILQ_INSERT_HEAD(head, elm, field) do { \
  312. if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
  313. (head)->tqh_first->field.tqe_prev = \
  314. &(elm)->field.tqe_next; \
  315. else \
  316. (head)->tqh_last = &(elm)->field.tqe_next; \
  317. (head)->tqh_first = (elm); \
  318. (elm)->field.tqe_prev = &(head)->tqh_first; \
  319. } while (0)
  320. #define TAILQ_INSERT_TAIL(head, elm, field) do { \
  321. (elm)->field.tqe_next = NULL; \
  322. (elm)->field.tqe_prev = (head)->tqh_last; \
  323. *(head)->tqh_last = (elm); \
  324. (head)->tqh_last = &(elm)->field.tqe_next; \
  325. } while (0)
  326. #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
  327. if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
  328. (elm)->field.tqe_next->field.tqe_prev = \
  329. &(elm)->field.tqe_next; \
  330. else \
  331. (head)->tqh_last = &(elm)->field.tqe_next; \
  332. (listelm)->field.tqe_next = (elm); \
  333. (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
  334. } while (0)
  335. #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
  336. (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
  337. (elm)->field.tqe_next = (listelm); \
  338. *(listelm)->field.tqe_prev = (elm); \
  339. (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
  340. } while (0)
  341. #define TAILQ_REMOVE(head, elm, field) do { \
  342. if (((elm)->field.tqe_next) != NULL) \
  343. (elm)->field.tqe_next->field.tqe_prev = \
  344. (elm)->field.tqe_prev; \
  345. else \
  346. (head)->tqh_last = (elm)->field.tqe_prev; \
  347. *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
  348. _Q_INVALIDATE((elm)->field.tqe_prev); \
  349. _Q_INVALIDATE((elm)->field.tqe_next); \
  350. } while (0)
  351. #define TAILQ_REPLACE(head, elm, elm2, field) do { \
  352. if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
  353. (elm2)->field.tqe_next->field.tqe_prev = \
  354. &(elm2)->field.tqe_next; \
  355. else \
  356. (head)->tqh_last = &(elm2)->field.tqe_next; \
  357. (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
  358. *(elm2)->field.tqe_prev = (elm2); \
  359. _Q_INVALIDATE((elm)->field.tqe_prev); \
  360. _Q_INVALIDATE((elm)->field.tqe_next); \
  361. } while (0)
  362. /*
  363. * Circular queue definitions.
  364. */
  365. #define CIRCLEQ_HEAD(name, type) \
  366. struct name { \
  367. struct type *cqh_first; /* first element */ \
  368. struct type *cqh_last; /* last element */ \
  369. }
  370. #define CIRCLEQ_HEAD_INITIALIZER(head) \
  371. { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
  372. #define CIRCLEQ_ENTRY(type) \
  373. struct { \
  374. struct type *cqe_next; /* next element */ \
  375. struct type *cqe_prev; /* previous element */ \
  376. }
  377. /*
  378. * Circular queue access methods
  379. */
  380. #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
  381. #define CIRCLEQ_LAST(head) ((head)->cqh_last)
  382. #define CIRCLEQ_END(head) ((void *)(head))
  383. #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
  384. #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
  385. #define CIRCLEQ_EMPTY(head) \
  386. (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
  387. #define CIRCLEQ_FOREACH(var, head, field) \
  388. for((var) = CIRCLEQ_FIRST(head); \
  389. (var) != CIRCLEQ_END(head); \
  390. (var) = CIRCLEQ_NEXT(var, field))
  391. #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
  392. for((var) = CIRCLEQ_LAST(head); \
  393. (var) != CIRCLEQ_END(head); \
  394. (var) = CIRCLEQ_PREV(var, field))
  395. /*
  396. * Circular queue functions.
  397. */
  398. #define CIRCLEQ_INIT(head) do { \
  399. (head)->cqh_first = CIRCLEQ_END(head); \
  400. (head)->cqh_last = CIRCLEQ_END(head); \
  401. } while (0)
  402. #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  403. (elm)->field.cqe_next = (listelm)->field.cqe_next; \
  404. (elm)->field.cqe_prev = (listelm); \
  405. if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
  406. (head)->cqh_last = (elm); \
  407. else \
  408. (listelm)->field.cqe_next->field.cqe_prev = (elm); \
  409. (listelm)->field.cqe_next = (elm); \
  410. } while (0)
  411. #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
  412. (elm)->field.cqe_next = (listelm); \
  413. (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
  414. if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
  415. (head)->cqh_first = (elm); \
  416. else \
  417. (listelm)->field.cqe_prev->field.cqe_next = (elm); \
  418. (listelm)->field.cqe_prev = (elm); \
  419. } while (0)
  420. #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
  421. (elm)->field.cqe_next = (head)->cqh_first; \
  422. (elm)->field.cqe_prev = CIRCLEQ_END(head); \
  423. if ((head)->cqh_last == CIRCLEQ_END(head)) \
  424. (head)->cqh_last = (elm); \
  425. else \
  426. (head)->cqh_first->field.cqe_prev = (elm); \
  427. (head)->cqh_first = (elm); \
  428. } while (0)
  429. #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
  430. (elm)->field.cqe_next = CIRCLEQ_END(head); \
  431. (elm)->field.cqe_prev = (head)->cqh_last; \
  432. if ((head)->cqh_first == CIRCLEQ_END(head)) \
  433. (head)->cqh_first = (elm); \
  434. else \
  435. (head)->cqh_last->field.cqe_next = (elm); \
  436. (head)->cqh_last = (elm); \
  437. } while (0)
  438. #define CIRCLEQ_REMOVE(head, elm, field) do { \
  439. if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
  440. (head)->cqh_last = (elm)->field.cqe_prev; \
  441. else \
  442. (elm)->field.cqe_next->field.cqe_prev = \
  443. (elm)->field.cqe_prev; \
  444. if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
  445. (head)->cqh_first = (elm)->field.cqe_next; \
  446. else \
  447. (elm)->field.cqe_prev->field.cqe_next = \
  448. (elm)->field.cqe_next; \
  449. _Q_INVALIDATE((elm)->field.cqe_prev); \
  450. _Q_INVALIDATE((elm)->field.cqe_next); \
  451. } while (0)
  452. #define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
  453. if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
  454. CIRCLEQ_END(head)) \
  455. (head).cqh_last = (elm2); \
  456. else \
  457. (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
  458. if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
  459. CIRCLEQ_END(head)) \
  460. (head).cqh_first = (elm2); \
  461. else \
  462. (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
  463. _Q_INVALIDATE((elm)->field.cqe_prev); \
  464. _Q_INVALIDATE((elm)->field.cqe_next); \
  465. } while (0)
  466. #endif /* !_SYS_QUEUE_H_ */