2
0

aesopt.h 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728
  1. /*
  2. ---------------------------------------------------------------------------
  3. Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved.
  4. LICENSE TERMS
  5. The free distribution and use of this software in both source and binary
  6. form is allowed (with or without changes) provided that:
  7. 1. distributions of this source code include the above copyright
  8. notice, this list of conditions and the following disclaimer;
  9. 2. distributions in binary form include the above copyright
  10. notice, this list of conditions and the following disclaimer
  11. in the documentation and/or other associated materials;
  12. 3. the copyright holder's name is not used to endorse products
  13. built using this software without specific written permission.
  14. ALTERNATIVELY, provided that this notice is retained in full, this product
  15. may be distributed under the terms of the GNU General Public License (GPL),
  16. in which case the provisions of the GPL apply INSTEAD OF those given above.
  17. DISCLAIMER
  18. This software is provided 'as is' with no explicit or implied warranties
  19. in respect of its properties, including, but not limited to, correctness
  20. and/or fitness for purpose.
  21. ---------------------------------------------------------------------------
  22. Issue 09/09/2006
  23. This file contains the compilation options for AES (Rijndael) and code
  24. that is common across encryption, key scheduling and table generation.
  25. OPERATION
  26. These source code files implement the AES algorithm Rijndael designed by
  27. Joan Daemen and Vincent Rijmen. This version is designed for the standard
  28. block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
  29. and 32 bytes).
  30. This version is designed for flexibility and speed using operations on
  31. 32-bit words rather than operations on bytes. It can be compiled with
  32. either big or little endian internal byte order but is faster when the
  33. native byte order for the processor is used.
  34. THE CIPHER INTERFACE
  35. The cipher interface is implemented as an array of bytes in which lower
  36. AES bit sequence indexes map to higher numeric significance within bytes.
  37. uint_8t (an unsigned 8-bit type)
  38. uint_32t (an unsigned 32-bit type)
  39. struct aes_encrypt_ctx (structure for the cipher encryption context)
  40. struct aes_decrypt_ctx (structure for the cipher decryption context)
  41. AES_RETURN the function return type
  42. C subroutine calls:
  43. AES_RETURN zrtp_bg_aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
  44. AES_RETURN zrtp_bg_aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
  45. AES_RETURN zrtp_bg_aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
  46. AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out,
  47. const aes_encrypt_ctx cx[1]);
  48. AES_RETURN zrtp_bg_aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
  49. AES_RETURN zrtp_bg_aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
  50. AES_RETURN zrtp_bg_aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
  51. AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out,
  52. const aes_decrypt_ctx cx[1]);
  53. IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
  54. you call zrtp_bg_gen_tabs() before AES is used so that the tables are initialised.
  55. C++ aes class subroutines:
  56. Class AESencrypt for encryption
  57. Construtors:
  58. AESencrypt(void)
  59. AESencrypt(const unsigned char *key) - 128 bit key
  60. Members:
  61. AES_RETURN key128(const unsigned char *key)
  62. AES_RETURN key192(const unsigned char *key)
  63. AES_RETURN key256(const unsigned char *key)
  64. AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const
  65. Class AESdecrypt for encryption
  66. Construtors:
  67. AESdecrypt(void)
  68. AESdecrypt(const unsigned char *key) - 128 bit key
  69. Members:
  70. AES_RETURN key128(const unsigned char *key)
  71. AES_RETURN key192(const unsigned char *key)
  72. AES_RETURN key256(const unsigned char *key)
  73. AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const
  74. */
  75. #ifdef _AESOPT_H
  76. #warning "_AESOPT_H already defined. aesopt.h will not be included"
  77. #endif
  78. #if !defined( _AESOPT_H )
  79. #define _AESOPT_H
  80. #if defined( __cplusplus )
  81. #include "aescpp.h"
  82. #else
  83. #include "aes.h"
  84. #endif
  85. /* PLATFORM SPECIFIC INCLUDES */
  86. //#include "brg_endian.h"
  87. #include "bg2zrtp.h"
  88. /* CONFIGURATION - THE USE OF DEFINES
  89. Later in this section there are a number of defines that control the
  90. operation of the code. In each section, the purpose of each define is
  91. explained so that the relevant form can be included or excluded by
  92. setting either 1's or 0's respectively on the branches of the related
  93. #if clauses. The following local defines should not be changed.
  94. */
  95. #define ENCRYPTION_IN_C 1
  96. #define DECRYPTION_IN_C 2
  97. #define ENC_KEYING_IN_C 4
  98. #define DEC_KEYING_IN_C 8
  99. #define NO_TABLES 0
  100. #define ONE_TABLE 1
  101. #define FOUR_TABLES 4
  102. #define NONE 0
  103. #define PARTIAL 1
  104. #define FULL 2
  105. /* --- START OF USER CONFIGURED OPTIONS --- */
  106. /* 1. BYTE ORDER WITHIN 32 BIT WORDS
  107. The fundamental data processing units in Rijndael are 8-bit bytes. The
  108. input, output and key input are all enumerated arrays of bytes in which
  109. bytes are numbered starting at zero and increasing to one less than the
  110. number of bytes in the array in question. This enumeration is only used
  111. for naming bytes and does not imply any adjacency or order relationship
  112. from one byte to another. When these inputs and outputs are considered
  113. as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
  114. byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
  115. In this implementation bits are numbered from 0 to 7 starting at the
  116. numerically least significant end of each byte (bit n represents 2^n).
  117. However, Rijndael can be implemented more efficiently using 32-bit
  118. words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
  119. into word[n]. While in principle these bytes can be assembled into words
  120. in any positions, this implementation only supports the two formats in
  121. which bytes in adjacent positions within words also have adjacent byte
  122. numbers. This order is called big-endian if the lowest numbered bytes
  123. in words have the highest numeric significance and little-endian if the
  124. opposite applies.
  125. This code can work in either order irrespective of the order used by the
  126. machine on which it runs. Normally the internal byte order will be set
  127. to the order of the processor on which the code is to be run but this
  128. define can be used to reverse this in special situations
  129. WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
  130. This define will hence be redefined later (in section 4) if necessary
  131. */
  132. #if 1
  133. #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
  134. #elif 0
  135. #define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
  136. #elif 0
  137. #define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
  138. #else
  139. #error The algorithm byte order is not defined
  140. #endif
  141. /* 2. VIA ACE SUPPORT
  142. Define this option if support for the VIA ACE is required. This uses
  143. inline assembler instructions and is only implemented for the Microsoft,
  144. Intel and GCC compilers. If VIA ACE is known to be present, then defining
  145. ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
  146. code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
  147. it is detected (both present and enabled) but the normal AES code will
  148. also be present.
  149. When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
  150. aligned; other input/output buffers do not need to be 16 byte aligned
  151. but there are very large performance gains if this can be arranged.
  152. VIA ACE also requires the decryption key schedule to be in reverse
  153. order (which later checks below ensure).
  154. */
  155. #if 0 && !defined( USE_VIA_ACE_IF_PRESENT )
  156. # define USE_VIA_ACE_IF_PRESENT
  157. #endif
  158. #if 0 && !defined( ASSUME_VIA_ACE_PRESENT )
  159. # define ASSUME_VIA_ACE_PRESENT
  160. # endif
  161. #if defined ( _WIN64 ) || defined( _WIN32_WCE ) || \
  162. defined( _MSC_VER ) && ( _MSC_VER <= 800 )
  163. # if defined( USE_VIA_ACE_IF_PRESENT )
  164. # undef USE_VIA_ACE_IF_PRESENT
  165. # endif
  166. # if defined( ASSUME_VIA_ACE_PRESENT )
  167. # undef ASSUME_VIA_ACE_PRESENT
  168. # endif
  169. #endif
  170. /* 3. ASSEMBLER SUPPORT
  171. This define (which can be on the command line) enables the use of the
  172. assembler code routines for encryption, decryption and key scheduling
  173. as follows:
  174. ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
  175. encryption and decryption and but with key scheduling in C
  176. ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for
  177. encryption, decryption and key scheduling
  178. ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
  179. encryption and decryption and but with key scheduling in C
  180. ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
  181. encryption and decryption and but with key scheduling in C
  182. Change one 'if 0' below to 'if 1' to select the version or define
  183. as a compilation option.
  184. */
  185. #if 0 && !defined( ASM_X86_V1C )
  186. # define ASM_X86_V1C
  187. #elif 0 && !defined( ASM_X86_V2 )
  188. # define ASM_X86_V2
  189. #elif 0 && !defined( ASM_X86_V2C )
  190. # define ASM_X86_V2C
  191. #elif 0 && !defined( ASM_AMD64_C )
  192. # define ASM_AMD64_C
  193. #endif
  194. #if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \
  195. && !defined( _M_IX86 ) || defined( ASM_AMD64_C ) && !defined( _M_X64 )
  196. # error Assembler code is only available for x86 and AMD64 systems
  197. #endif
  198. /* 4. FAST INPUT/OUTPUT OPERATIONS.
  199. On some machines it is possible to improve speed by transferring the
  200. bytes in the input and output arrays to and from the internal 32-bit
  201. variables by addressing these arrays as if they are arrays of 32-bit
  202. words. On some machines this will always be possible but there may
  203. be a large performance penalty if the byte arrays are not aligned on
  204. the normal word boundaries. On other machines this technique will
  205. lead to memory access errors when such 32-bit word accesses are not
  206. properly aligned. The option SAFE_IO avoids such problems but will
  207. often be slower on those machines that support misaligned access
  208. (especially so if care is taken to align the input and output byte
  209. arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
  210. assumed that access to byte arrays as if they are arrays of 32-bit
  211. words will not cause problems when such accesses are misaligned.
  212. */
  213. #if 1 && !defined( _MSC_VER )
  214. #define SAFE_IO
  215. #endif
  216. /* 5. LOOP UNROLLING
  217. The code for encryption and decrytpion cycles through a number of rounds
  218. that can be implemented either in a loop or by expanding the code into a
  219. long sequence of instructions, the latter producing a larger program but
  220. one that will often be much faster. The latter is called loop unrolling.
  221. There are also potential speed advantages in expanding two iterations in
  222. a loop with half the number of iterations, which is called partial loop
  223. unrolling. The following options allow partial or full loop unrolling
  224. to be set independently for encryption and decryption
  225. */
  226. #if 1
  227. #define ENC_UNROLL FULL
  228. #elif 0
  229. #define ENC_UNROLL PARTIAL
  230. #else
  231. #define ENC_UNROLL NONE
  232. #endif
  233. #if 1
  234. #define DEC_UNROLL FULL
  235. #elif 0
  236. #define DEC_UNROLL PARTIAL
  237. #else
  238. #define DEC_UNROLL NONE
  239. #endif
  240. /* 6. FAST FINITE FIELD OPERATIONS
  241. If this section is included, tables are used to provide faster finite
  242. field arithmetic (this has no effect if FIXED_TABLES is defined).
  243. */
  244. #if 1
  245. #define FF_TABLES
  246. #endif
  247. /* 7. INTERNAL STATE VARIABLE FORMAT
  248. The internal state of Rijndael is stored in a number of local 32-bit
  249. word varaibles which can be defined either as an array or as individual
  250. names variables. Include this section if you want to store these local
  251. varaibles in arrays. Otherwise individual local variables will be used.
  252. */
  253. #if 1
  254. #define ARRAYS
  255. #endif
  256. /* 8. FIXED OR DYNAMIC TABLES
  257. When this section is included the tables used by the code are compiled
  258. statically into the binary file. Otherwise the subroutine zrtp_bg_gen_tabs()
  259. must be called to compute them before the code is first used.
  260. */
  261. #if 1 && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
  262. #define FIXED_TABLES
  263. #endif
  264. /* 9. TABLE ALIGNMENT
  265. On some sytsems speed will be improved by aligning the AES large lookup
  266. tables on particular boundaries. This define should be set to a power of
  267. two giving the desired alignment. It can be left undefined if alignment
  268. is not needed. This option is specific to the Microsft VC++ compiler -
  269. it seems to sometimes cause trouble for the VC++ version 6 compiler.
  270. */
  271. #if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
  272. #define TABLE_ALIGN 32
  273. #endif
  274. /* 10. TABLE OPTIONS
  275. This cipher proceeds by repeating in a number of cycles known as 'rounds'
  276. which are implemented by a round function which can optionally be speeded
  277. up using tables. The basic tables are each 256 32-bit words, with either
  278. one or four tables being required for each round function depending on
  279. how much speed is required. The encryption and decryption round functions
  280. are different and the last encryption and decrytpion round functions are
  281. different again making four different round functions in all.
  282. This means that:
  283. 1. Normal encryption and decryption rounds can each use either 0, 1
  284. or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
  285. 2. The last encryption and decryption rounds can also use either 0, 1
  286. or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
  287. Include or exclude the appropriate definitions below to set the number
  288. of tables used by this implementation.
  289. */
  290. #if 1 /* set tables for the normal encryption round */
  291. #define ENC_ROUND FOUR_TABLES
  292. #elif 0
  293. #define ENC_ROUND ONE_TABLE
  294. #else
  295. #define ENC_ROUND NO_TABLES
  296. #endif
  297. #if 1 /* set tables for the last encryption round */
  298. #define LAST_ENC_ROUND FOUR_TABLES
  299. #elif 0
  300. #define LAST_ENC_ROUND ONE_TABLE
  301. #else
  302. #define LAST_ENC_ROUND NO_TABLES
  303. #endif
  304. #if 1 /* set tables for the normal decryption round */
  305. #define DEC_ROUND FOUR_TABLES
  306. #elif 0
  307. #define DEC_ROUND ONE_TABLE
  308. #else
  309. #define DEC_ROUND NO_TABLES
  310. #endif
  311. #if 1 /* set tables for the last decryption round */
  312. #define LAST_DEC_ROUND FOUR_TABLES
  313. #elif 0
  314. #define LAST_DEC_ROUND ONE_TABLE
  315. #else
  316. #define LAST_DEC_ROUND NO_TABLES
  317. #endif
  318. /* The decryption key schedule can be speeded up with tables in the same
  319. way that the round functions can. Include or exclude the following
  320. defines to set this requirement.
  321. */
  322. #if 1
  323. #define KEY_SCHED FOUR_TABLES
  324. #elif 0
  325. #define KEY_SCHED ONE_TABLE
  326. #else
  327. #define KEY_SCHED NO_TABLES
  328. #endif
  329. /* ---- END OF USER CONFIGURED OPTIONS ---- */
  330. /* VIA ACE support is only available for VC++ and GCC */
  331. #if !defined( _MSC_VER ) && !defined( __GNUC__ )
  332. # if defined( ASSUME_VIA_ACE_PRESENT )
  333. # undef ASSUME_VIA_ACE_PRESENT
  334. # endif
  335. # if defined( USE_VIA_ACE_IF_PRESENT )
  336. # undef USE_VIA_ACE_IF_PRESENT
  337. # endif
  338. #endif
  339. #if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT )
  340. #define USE_VIA_ACE_IF_PRESENT
  341. #endif
  342. #if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS )
  343. #define AES_REV_DKS
  344. #endif
  345. /* Assembler support requires the use of platform byte order */
  346. #if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \
  347. && (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
  348. #undef ALGORITHM_BYTE_ORDER
  349. #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
  350. #endif
  351. /* In this implementation the columns of the state array are each held in
  352. 32-bit words. The state array can be held in various ways: in an array
  353. of words, in a number of individual word variables or in a number of
  354. processor registers. The following define maps a variable name x and
  355. a column number c to the way the state array variable is to be held.
  356. The first define below maps the state into an array x[c] whereas the
  357. second form maps the state into a number of individual variables x0,
  358. x1, etc. Another form could map individual state colums to machine
  359. register names.
  360. */
  361. #if defined( ARRAYS )
  362. #define s(x,c) x[c]
  363. #else
  364. #define s(x,c) x##c
  365. #endif
  366. /* This implementation provides subroutines for encryption, decryption
  367. and for setting the three key lengths (separately) for encryption
  368. and decryption. Since not all functions are needed, masks are set
  369. up here to determine which will be implemented in C
  370. */
  371. #if !defined( AES_ENCRYPT )
  372. # define EFUNCS_IN_C 0
  373. #elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
  374. || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
  375. # define EFUNCS_IN_C ENC_KEYING_IN_C
  376. #elif !defined( ASM_X86_V2 )
  377. # define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C )
  378. #else
  379. # define EFUNCS_IN_C 0
  380. #endif
  381. #if !defined( AES_DECRYPT )
  382. # define DFUNCS_IN_C 0
  383. #elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
  384. || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
  385. # define DFUNCS_IN_C DEC_KEYING_IN_C
  386. #elif !defined( ASM_X86_V2 )
  387. # define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C )
  388. #else
  389. # define DFUNCS_IN_C 0
  390. #endif
  391. #define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C )
  392. /* END OF CONFIGURATION OPTIONS */
  393. #define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
  394. /* Disable or report errors on some combinations of options */
  395. #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
  396. #undef LAST_ENC_ROUND
  397. #define LAST_ENC_ROUND NO_TABLES
  398. #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
  399. #undef LAST_ENC_ROUND
  400. #define LAST_ENC_ROUND ONE_TABLE
  401. #endif
  402. #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
  403. #undef ENC_UNROLL
  404. #define ENC_UNROLL NONE
  405. #endif
  406. #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
  407. #undef LAST_DEC_ROUND
  408. #define LAST_DEC_ROUND NO_TABLES
  409. #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
  410. #undef LAST_DEC_ROUND
  411. #define LAST_DEC_ROUND ONE_TABLE
  412. #endif
  413. #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
  414. #undef DEC_UNROLL
  415. #define DEC_UNROLL NONE
  416. #endif
  417. #if defined( bswap32 )
  418. #define aes_sw32 bswap32
  419. #elif defined( bswap_32 )
  420. #define aes_sw32 bswap_32
  421. #else
  422. #define brot(x,n) (((uint_32t)(x) << n) | ((uint_32t)(x) >> (32 - n)))
  423. #define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
  424. #endif
  425. /* upr(x,n): rotates bytes within words by n positions, moving bytes to
  426. higher index positions with wrap around into low positions
  427. ups(x,n): moves bytes by n positions to higher index positions in
  428. words but without wrap around
  429. bval(x,n): extracts a byte from a word
  430. WARNING: The definitions given here are intended only for use with
  431. unsigned variables and with shift counts that are compile
  432. time constants
  433. */
  434. #if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN )
  435. #define upr(x,n) (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n))))
  436. #define ups(x,n) ((uint_32t) (x) << (8 * (n)))
  437. #define bval(x,n) ((uint_8t)((x) >> (8 * (n))))
  438. #define bytes2word(b0, b1, b2, b3) \
  439. (((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0))
  440. #endif
  441. #if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN )
  442. #define upr(x,n) (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n))))
  443. #define ups(x,n) ((uint_32t) (x) >> (8 * (n)))
  444. #define bval(x,n) ((uint_8t)((x) >> (24 - 8 * (n))))
  445. #define bytes2word(b0, b1, b2, b3) \
  446. (((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3))
  447. #endif
  448. #if defined( SAFE_IO )
  449. #define word_in(x,c) bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \
  450. ((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3])
  451. #define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \
  452. ((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); }
  453. #elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER )
  454. #define word_in(x,c) (*((uint_32t*)(x)+(c)))
  455. #define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v))
  456. #else
  457. #define word_in(x,c) aes_sw32(*((uint_32t*)(x)+(c)))
  458. #define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v))
  459. #endif
  460. /* the finite field modular polynomial and elements */
  461. #define WPOLY 0x011b
  462. #define BPOLY 0x1b
  463. /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
  464. #define m1 0x80808080
  465. #define m2 0x7f7f7f7f
  466. #define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
  467. /* The following defines provide alternative definitions of gf_mulx that might
  468. give improved performance if a fast 32-bit multiply is not available. Note
  469. that a temporary variable u needs to be defined where gf_mulx is used.
  470. #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
  471. #define m4 (0x01010101 * BPOLY)
  472. #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
  473. */
  474. /* Work out which tables are needed for the different options */
  475. #if defined( ASM_X86_V1C )
  476. #if defined( ENC_ROUND )
  477. #undef ENC_ROUND
  478. #endif
  479. #define ENC_ROUND FOUR_TABLES
  480. #if defined( LAST_ENC_ROUND )
  481. #undef LAST_ENC_ROUND
  482. #endif
  483. #define LAST_ENC_ROUND FOUR_TABLES
  484. #if defined( DEC_ROUND )
  485. #undef DEC_ROUND
  486. #endif
  487. #define DEC_ROUND FOUR_TABLES
  488. #if defined( LAST_DEC_ROUND )
  489. #undef LAST_DEC_ROUND
  490. #endif
  491. #define LAST_DEC_ROUND FOUR_TABLES
  492. #if defined( KEY_SCHED )
  493. #undef KEY_SCHED
  494. #define KEY_SCHED FOUR_TABLES
  495. #endif
  496. #endif
  497. #if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C )
  498. #if ENC_ROUND == ONE_TABLE
  499. #define FT1_SET
  500. #elif ENC_ROUND == FOUR_TABLES
  501. #define FT4_SET
  502. #else
  503. #define SBX_SET
  504. #endif
  505. #if LAST_ENC_ROUND == ONE_TABLE
  506. #define FL1_SET
  507. #elif LAST_ENC_ROUND == FOUR_TABLES
  508. #define FL4_SET
  509. #elif !defined( SBX_SET )
  510. #define SBX_SET
  511. #endif
  512. #endif
  513. #if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C )
  514. #if DEC_ROUND == ONE_TABLE
  515. #define IT1_SET
  516. #elif DEC_ROUND == FOUR_TABLES
  517. #define IT4_SET
  518. #else
  519. #define ISB_SET
  520. #endif
  521. #if LAST_DEC_ROUND == ONE_TABLE
  522. #define IL1_SET
  523. #elif LAST_DEC_ROUND == FOUR_TABLES
  524. #define IL4_SET
  525. #elif !defined(ISB_SET)
  526. #define ISB_SET
  527. #endif
  528. #endif
  529. #if (FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C)
  530. #if KEY_SCHED == ONE_TABLE
  531. #define LS1_SET
  532. #elif KEY_SCHED == FOUR_TABLES
  533. #define LS4_SET
  534. #elif !defined( SBX_SET )
  535. #define SBX_SET
  536. #endif
  537. #endif
  538. #if (FUNCS_IN_C & DEC_KEYING_IN_C)
  539. #if KEY_SCHED == ONE_TABLE
  540. #define IM1_SET
  541. #elif KEY_SCHED == FOUR_TABLES
  542. #define IM4_SET
  543. #elif !defined( SBX_SET )
  544. #define SBX_SET
  545. #endif
  546. #endif
  547. /* generic definitions of Rijndael macros that use tables */
  548. #define no_table(x,box,vf,rf,c) bytes2word( \
  549. box[bval(vf(x,0,c),rf(0,c))], \
  550. box[bval(vf(x,1,c),rf(1,c))], \
  551. box[bval(vf(x,2,c),rf(2,c))], \
  552. box[bval(vf(x,3,c),rf(3,c))])
  553. #define one_table(x,op,tab,vf,rf,c) \
  554. ( tab[bval(vf(x,0,c),rf(0,c))] \
  555. ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
  556. ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
  557. ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
  558. #define four_tables(x,tab,vf,rf,c) \
  559. ( tab[0][bval(vf(x,0,c),rf(0,c))] \
  560. ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
  561. ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
  562. ^ tab[3][bval(vf(x,3,c),rf(3,c))])
  563. #define vf1(x,r,c) (x)
  564. #define rf1(r,c) (r)
  565. #define rf2(r,c) ((8+r-c)&3)
  566. /* perform forward and inverse column mix operation on four bytes in long word x in */
  567. /* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
  568. #if defined( FM4_SET ) /* not currently used */
  569. #define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
  570. #elif defined( FM1_SET ) /* not currently used */
  571. #define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
  572. #else
  573. #define dec_fmvars uint_32t g2
  574. #define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
  575. #endif
  576. #if defined( IM4_SET )
  577. #define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
  578. #elif defined( IM1_SET )
  579. #define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
  580. #else
  581. #define dec_imvars uint_32t g2, g4, g9
  582. #define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
  583. (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
  584. #endif
  585. #if defined( FL4_SET )
  586. #define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
  587. #elif defined( LS4_SET )
  588. #define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
  589. #elif defined( FL1_SET )
  590. #define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
  591. #elif defined( LS1_SET )
  592. #define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
  593. #else
  594. #define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
  595. #endif
  596. #if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET )
  597. #define ISB_SET
  598. #endif
  599. #endif