123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774 |
- /*
- ---------------------------------------------------------------------------
- Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
- LICENSE TERMS
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
- 1. distributions of this source code include the above copyright
- notice, this list of conditions and the following disclaimer;
- 2. distributions in binary form include the above copyright
- notice, this list of conditions and the following disclaimer
- in the documentation and/or other associated materials;
- 3. the copyright holder's name is not used to endorse products
- built using this software without specific written permission.
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
- DISCLAIMER
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 01/08/2005
- This is a byte oriented version of SHA2 that operates on arrays of bytes
- stored in memory. This code implements sha256, sha384 and sha512 but the
- latter two functions rely on efficient 64-bit integer operations that
- may not be very efficient on 32-bit machines
- The sha256 functions use a type 'sha256_ctx' to hold details of the
- current hash state and uses the following three calls:
- void sha256_begin(sha256_ctx ctx[1])
- void sha256_hash(const unsigned char data[],
- unsigned long len, sha256_ctx ctx[1])
- void sha_end1(unsigned char hval[], sha256_ctx ctx[1])
- The first subroutine initialises a hash computation by setting up the
- context in the sha256_ctx context. The second subroutine hashes 8-bit
- bytes from array data[] into the hash state withinh sha256_ctx context,
- the number of bytes to be hashed being given by the the unsigned long
- integer len. The third subroutine completes the hash calculation and
- places the resulting digest value in the array of 8-bit bytes hval[].
- The sha384 and sha512 functions are similar and use the interfaces:
- void sha384_begin(sha384_ctx ctx[1]);
- void sha384_hash(const unsigned char data[],
- unsigned long len, sha384_ctx ctx[1]);
- void sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
- void sha512_begin(sha512_ctx ctx[1]);
- void sha512_hash(const unsigned char data[],
- unsigned long len, sha512_ctx ctx[1]);
- void sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
- In addition there is a function sha2 that can be used to call all these
- functions using a call with a hash length parameter as follows:
- int sha2_begin(unsigned long len, sha2_ctx ctx[1]);
- void sha2_hash(const unsigned char data[],
- unsigned long len, sha2_ctx ctx[1]);
- void sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
- My thanks to Erik Andersen <andersen@codepoet.org> for testing this code
- on big-endian systems and for his assistance with corrections
- */
- #if 0
- #define UNROLL_SHA2 /* for SHA2 loop unroll */
- #endif
- #include <string.h> /* for memcpy() etc. */
- #include "sha2.h"
- //#include "brg_endian.h"
- #include "bg2zrtp.h"
- #if defined(__cplusplus)
- extern "C"
- {
- #endif
- #if defined( _MSC_VER ) && ( _MSC_VER > 800 )
- #pragma intrinsic(memcpy)
- #endif
- #if 0 && defined(_MSC_VER)
- #define rotl32 _lrotl
- #define rotr32 _lrotr
- #else
- #define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
- #define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
- #endif
- #if !defined(bswap_32)
- #define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
- #endif
- #if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
- #define SWAP_BYTES
- #else
- #undef SWAP_BYTES
- #endif
- #if 0
- #define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
- #define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
- #else /* Thanks to Rich Schroeppel and Colin Plumb for the following */
- #define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
- #define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
- #endif
- /* round transforms for SHA256 and SHA512 compression functions */
- #define vf(n,i) v[(n - i) & 7]
- #define hf(i) (p[i & 15] += \
- g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
- #define v_cycle(i,j) \
- vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \
- + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \
- vf(3,i) += vf(7,i); \
- vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
- #if defined(SHA_224) || defined(SHA_256)
- #define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
- #if defined(SWAP_BYTES)
- #define bsw_32(p,n) \
- { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
- #else
- #define bsw_32(p,n)
- #endif
- #define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
- #define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
- #define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
- #define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
- #define k_0 k256
- /* rotated SHA256 round definition. Rather than swapping variables as in */
- /* FIPS-180, different variables are 'rotated' on each round, returning */
- /* to their starting positions every eight rounds */
- #define q(n) v##n
- #define one_cycle(a,b,c,d,e,f,g,h,k,w) \
- q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \
- q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c))
- /* SHA256 mixing data */
- const uint_32t k256[64] =
- { 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
- 0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
- 0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
- 0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
- 0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
- 0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
- 0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
- 0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
- 0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
- 0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
- 0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
- 0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
- 0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
- 0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
- 0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
- 0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul,
- };
- /* Compile 64 bytes of hash data into SHA256 digest value */
- /* NOTE: this routine assumes that the byte order in the */
- /* ctx->wbuf[] at this point is such that low address bytes */
- /* in the ORIGINAL byte stream will go into the high end of */
- /* words on BOTH big and little endian systems */
- VOID_RETURN sha256_compile(sha256_ctx ctx[1])
- {
- #if !defined(UNROLL_SHA2)
- uint_32t j, *p = ctx->wbuf, v[8];
- memcpy(v, ctx->hash, 8 * sizeof(uint_32t));
- for(j = 0; j < 64; j += 16)
- {
- v_cycle( 0, j); v_cycle( 1, j);
- v_cycle( 2, j); v_cycle( 3, j);
- v_cycle( 4, j); v_cycle( 5, j);
- v_cycle( 6, j); v_cycle( 7, j);
- v_cycle( 8, j); v_cycle( 9, j);
- v_cycle(10, j); v_cycle(11, j);
- v_cycle(12, j); v_cycle(13, j);
- v_cycle(14, j); v_cycle(15, j);
- }
- ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
- ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
- ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
- ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
- #else
- uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7;
- v0 = ctx->hash[0]; v1 = ctx->hash[1];
- v2 = ctx->hash[2]; v3 = ctx->hash[3];
- v4 = ctx->hash[4]; v5 = ctx->hash[5];
- v6 = ctx->hash[6]; v7 = ctx->hash[7];
- one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]);
- one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]);
- one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]);
- one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]);
- one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]);
- one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]);
- one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]);
- one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]);
- one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]);
- one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]);
- one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]);
- one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]);
- one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]);
- one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]);
- one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]);
- one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]);
- one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0));
- one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1));
- one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2));
- one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3));
- one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4));
- one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5));
- one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6));
- one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7));
- one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8));
- one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9));
- one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10));
- one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11));
- one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12));
- one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13));
- one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14));
- one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15));
- one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0));
- one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1));
- one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2));
- one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3));
- one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4));
- one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5));
- one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6));
- one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7));
- one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8));
- one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9));
- one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10));
- one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11));
- one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12));
- one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13));
- one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14));
- one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15));
- one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0));
- one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1));
- one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2));
- one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3));
- one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4));
- one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5));
- one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6));
- one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7));
- one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8));
- one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9));
- one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10));
- one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11));
- one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12));
- one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13));
- one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14));
- one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15));
- ctx->hash[0] += v0; ctx->hash[1] += v1;
- ctx->hash[2] += v2; ctx->hash[3] += v3;
- ctx->hash[4] += v4; ctx->hash[5] += v5;
- ctx->hash[6] += v6; ctx->hash[7] += v7;
- #endif
- }
- /* SHA256 hash data in an array of bytes into hash buffer */
- /* and call the hash_compile function as required. */
- VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
- { uint_32t pos = (uint_32t)(ctx->count[0] & SHA256_MASK),
- space = SHA256_BLOCK_SIZE - pos;
- const unsigned char *sp = data;
- if((ctx->count[0] += len) < len)
- ++(ctx->count[1]);
- while(len >= space) /* tranfer whole blocks while possible */
- {
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
- sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0;
- bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2)
- sha256_compile(ctx);
- }
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
- }
- /* SHA256 Final padding and digest calculation */
- static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen)
- { uint_32t i = (uint_32t)(ctx->count[0] & SHA256_MASK);
- /* put bytes in the buffer in an order in which references to */
- /* 32-bit words will put bytes with lower addresses into the */
- /* top of 32 bit words on BOTH big and little endian machines */
- bsw_32(ctx->wbuf, (i + 3) >> 2)
- /* we now need to mask valid bytes and add the padding which is */
- /* a single 1 bit and as many zero bits as necessary. Note that */
- /* we can always add the first padding byte here because the */
- /* buffer always has at least one empty slot */
- ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
- ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
- /* we need 9 or more empty positions, one for the padding byte */
- /* (above) and eight for the length count. If there is not */
- /* enough space pad and empty the buffer */
- if(i > SHA256_BLOCK_SIZE - 9)
- {
- if(i < 60) ctx->wbuf[15] = 0;
- sha256_compile(ctx);
- i = 0;
- }
- else /* compute a word index for the empty buffer positions */
- i = (i >> 2) + 1;
- while(i < 14) /* and zero pad all but last two positions */
- ctx->wbuf[i++] = 0;
- /* the following 32-bit length fields are assembled in the */
- /* wrong byte order on little endian machines but this is */
- /* corrected later since they are only ever used as 32-bit */
- /* word values. */
- ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
- ctx->wbuf[15] = ctx->count[0] << 3;
- sha256_compile(ctx);
- /* extract the hash value as bytes in case the hash buffer is */
- /* mislaigned for 32-bit words */
- for(i = 0; i < hlen; ++i)
- hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
- }
- #endif
- #if defined(SHA_224)
- const uint_32t i224[8] =
- {
- 0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul,
- 0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul
- };
- VOID_RETURN sha224_begin(sha224_ctx ctx[1])
- {
- ctx->count[0] = ctx->count[1] = 0;
- memcpy(ctx->hash, i224, 8 * sizeof(uint_32t));
- }
- VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1])
- {
- sha_end1(hval, ctx, SHA224_DIGEST_SIZE);
- }
- VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len)
- { sha224_ctx cx[1];
- sha224_begin(cx);
- sha224_hash(data, len, cx);
- sha_end1(hval, cx, SHA224_DIGEST_SIZE);
- }
- #endif
- #if defined(SHA_256)
- const uint_32t i256[8] =
- {
- 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul,
- 0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul
- };
- VOID_RETURN sha256_begin(sha256_ctx ctx[1])
- {
- ctx->count[0] = ctx->count[1] = 0;
- memcpy(ctx->hash, i256, 8 * sizeof(uint_32t));
- }
- VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1])
- {
- sha_end1(hval, ctx, SHA256_DIGEST_SIZE);
- }
- VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
- { sha256_ctx cx[1];
- sha256_begin(cx);
- sha256_hash(data, len, cx);
- sha_end1(hval, cx, SHA256_DIGEST_SIZE);
- }
- #endif
- #if defined(SHA_384) || defined(SHA_512)
- #define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
- #define rotr64(x,n) (((x) >> n) | ((x) << (64 - n)))
- #if !defined(bswap_64)
- #define bswap_64(x) (((uint_64t)(bswap_32((uint_32t)(x)))) << 32 | bswap_32((uint_32t)((x) >> 32)))
- #endif
- #if defined(SWAP_BYTES)
- #define bsw_64(p,n) \
- { int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); }
- #else
- #define bsw_64(p,n)
- #endif
- /* SHA512 mixing function definitions */
- #ifdef s_0
- # undef s_0
- # undef s_1
- # undef g_0
- # undef g_1
- # undef k_0
- #endif
- #define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
- #define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
- #define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
- #define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
- #define k_0 k512
- /* SHA384/SHA512 mixing data */
- const uint_64t k512[80] =
- {
- li_64(428a2f98d728ae22), li_64(7137449123ef65cd),
- li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc),
- li_64(3956c25bf348b538), li_64(59f111f1b605d019),
- li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118),
- li_64(d807aa98a3030242), li_64(12835b0145706fbe),
- li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2),
- li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1),
- li_64(9bdc06a725c71235), li_64(c19bf174cf692694),
- li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3),
- li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65),
- li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483),
- li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5),
- li_64(983e5152ee66dfab), li_64(a831c66d2db43210),
- li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4),
- li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725),
- li_64(06ca6351e003826f), li_64(142929670a0e6e70),
- li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926),
- li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df),
- li_64(650a73548baf63de), li_64(766a0abb3c77b2a8),
- li_64(81c2c92e47edaee6), li_64(92722c851482353b),
- li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001),
- li_64(c24b8b70d0f89791), li_64(c76c51a30654be30),
- li_64(d192e819d6ef5218), li_64(d69906245565a910),
- li_64(f40e35855771202a), li_64(106aa07032bbd1b8),
- li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53),
- li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8),
- li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb),
- li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3),
- li_64(748f82ee5defb2fc), li_64(78a5636f43172f60),
- li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec),
- li_64(90befffa23631e28), li_64(a4506cebde82bde9),
- li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b),
- li_64(ca273eceea26619c), li_64(d186b8c721c0c207),
- li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178),
- li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6),
- li_64(113f9804bef90dae), li_64(1b710b35131c471b),
- li_64(28db77f523047d84), li_64(32caab7b40c72493),
- li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c),
- li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a),
- li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817)
- };
- /* Compile 128 bytes of hash data into SHA384/512 digest */
- /* NOTE: this routine assumes that the byte order in the */
- /* ctx->wbuf[] at this point is such that low address bytes */
- /* in the ORIGINAL byte stream will go into the high end of */
- /* words on BOTH big and little endian systems */
- VOID_RETURN sha512_compile(sha512_ctx ctx[1])
- { uint_64t v[8], *p = ctx->wbuf;
- uint_32t j;
- memcpy(v, ctx->hash, 8 * sizeof(uint_64t));
- for(j = 0; j < 80; j += 16)
- {
- v_cycle( 0, j); v_cycle( 1, j);
- v_cycle( 2, j); v_cycle( 3, j);
- v_cycle( 4, j); v_cycle( 5, j);
- v_cycle( 6, j); v_cycle( 7, j);
- v_cycle( 8, j); v_cycle( 9, j);
- v_cycle(10, j); v_cycle(11, j);
- v_cycle(12, j); v_cycle(13, j);
- v_cycle(14, j); v_cycle(15, j);
- }
- ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
- ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
- ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
- ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
- }
- /* Compile 128 bytes of hash data into SHA256 digest value */
- /* NOTE: this routine assumes that the byte order in the */
- /* ctx->wbuf[] at this point is in such an order that low */
- /* address bytes in the ORIGINAL byte stream placed in this */
- /* buffer will now go to the high end of words on BOTH big */
- /* and little endian systems */
- VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
- { uint_32t pos = (uint_32t)(ctx->count[0] & SHA512_MASK),
- space = SHA512_BLOCK_SIZE - pos;
- const unsigned char *sp = data;
- if((ctx->count[0] += len) < len)
- ++(ctx->count[1]);
- while(len >= space) /* tranfer whole blocks while possible */
- {
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
- sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0;
- bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3);
- sha512_compile(ctx);
- }
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
- }
- /* SHA384/512 Final padding and digest calculation */
- static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
- { uint_32t i = (uint_32t)(ctx->count[0] & SHA512_MASK);
- /* put bytes in the buffer in an order in which references to */
- /* 32-bit words will put bytes with lower addresses into the */
- /* top of 32 bit words on BOTH big and little endian machines */
- bsw_64(ctx->wbuf, (i + 7) >> 3);
- /* we now need to mask valid bytes and add the padding which is */
- /* a single 1 bit and as many zero bits as necessary. Note that */
- /* we can always add the first padding byte here because the */
- /* buffer always has at least one empty slot */
- ctx->wbuf[i >> 3] &= li_64(ffffffffffffff00) << 8 * (~i & 7);
- ctx->wbuf[i >> 3] |= li_64(0000000000000080) << 8 * (~i & 7);
- /* we need 17 or more empty byte positions, one for the padding */
- /* byte (above) and sixteen for the length count. If there is */
- /* not enough space pad and empty the buffer */
- if(i > SHA512_BLOCK_SIZE - 17)
- {
- if(i < 120) ctx->wbuf[15] = 0;
- sha512_compile(ctx);
- i = 0;
- }
- else
- i = (i >> 3) + 1;
- while(i < 14)
- ctx->wbuf[i++] = 0;
- /* the following 64-bit length fields are assembled in the */
- /* wrong byte order on little endian machines but this is */
- /* corrected later since they are only ever used as 64-bit */
- /* word values. */
- ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61);
- ctx->wbuf[15] = ctx->count[0] << 3;
- sha512_compile(ctx);
- /* extract the hash value as bytes in case the hash buffer is */
- /* misaligned for 32-bit words */
- for(i = 0; i < hlen; ++i)
- hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7)));
- }
- #endif
- #if defined(SHA_384)
- /* SHA384 initialisation data */
- const uint_64t i384[80] =
- {
- li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507),
- li_64(9159015a3070dd17), li_64(152fecd8f70e5939),
- li_64(67332667ffc00b31), li_64(8eb44a8768581511),
- li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4)
- };
- VOID_RETURN sha384_begin(sha384_ctx ctx[1])
- {
- ctx->count[0] = ctx->count[1] = 0;
- memcpy(ctx->hash, i384, 8 * sizeof(uint_64t));
- }
- VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1])
- {
- sha_end2(hval, ctx, SHA384_DIGEST_SIZE);
- }
- VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
- { sha384_ctx cx[1];
- sha384_begin(cx);
- sha384_hash(data, len, cx);
- sha_end2(hval, cx, SHA384_DIGEST_SIZE);
- }
- #endif
- #if defined(SHA_512)
- /* SHA512 initialisation data */
- const uint_64t i512[80] =
- {
- li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b),
- li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1),
- li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f),
- li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179)
- };
- VOID_RETURN sha512_begin(sha512_ctx ctx[1])
- {
- ctx->count[0] = ctx->count[1] = 0;
- memcpy(ctx->hash, i512, 8 * sizeof(uint_64t));
- }
- VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1])
- {
- sha_end2(hval, ctx, SHA512_DIGEST_SIZE);
- }
- VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
- { sha512_ctx cx[1];
- sha512_begin(cx);
- sha512_hash(data, len, cx);
- sha_end2(hval, cx, SHA512_DIGEST_SIZE);
- }
- #endif
- #if defined(SHA_2)
- #define CTX_224(x) ((x)->uu->ctx256)
- #define CTX_256(x) ((x)->uu->ctx256)
- #define CTX_384(x) ((x)->uu->ctx512)
- #define CTX_512(x) ((x)->uu->ctx512)
- /* SHA2 initialisation */
- INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1])
- {
- switch(len)
- {
- #if defined(SHA_224)
- case 224:
- case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
- memcpy(CTX_256(ctx)->hash, i224, 32);
- ctx->sha2_len = 28; return EXIT_SUCCESS;
- #endif
- #if defined(SHA_256)
- case 256:
- case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
- memcpy(CTX_256(ctx)->hash, i256, 32);
- ctx->sha2_len = 32; return EXIT_SUCCESS;
- #endif
- #if defined(SHA_384)
- case 384:
- case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
- memcpy(CTX_384(ctx)->hash, i384, 64);
- ctx->sha2_len = 48; return EXIT_SUCCESS;
- #endif
- #if defined(SHA_512)
- case 512:
- case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
- memcpy(CTX_512(ctx)->hash, i512, 64);
- ctx->sha2_len = 64; return EXIT_SUCCESS;
- #endif
- default: return EXIT_FAILURE;
- }
- }
- VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
- {
- switch(ctx->sha2_len)
- {
- #if defined(SHA_224)
- case 28: sha224_hash(data, len, CTX_224(ctx)); return;
- #endif
- #if defined(SHA_256)
- case 32: sha256_hash(data, len, CTX_256(ctx)); return;
- #endif
- #if defined(SHA_384)
- case 48: sha384_hash(data, len, CTX_384(ctx)); return;
- #endif
- #if defined(SHA_512)
- case 64: sha512_hash(data, len, CTX_512(ctx)); return;
- #endif
- }
- }
- VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1])
- {
- switch(ctx->sha2_len)
- {
- #if defined(SHA_224)
- case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return;
- #endif
- #if defined(SHA_256)
- case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return;
- #endif
- #if defined(SHA_384)
- case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
- #endif
- #if defined(SHA_512)
- case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
- #endif
- }
- }
- INT_RETURN sha2(unsigned char hval[], unsigned long size,
- const unsigned char data[], unsigned long len)
- { sha2_ctx cx[1];
- if(sha2_begin(size, cx) == EXIT_SUCCESS)
- {
- sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS;
- }
- else
- return EXIT_FAILURE;
- }
- #endif
- #if defined(__cplusplus)
- }
- #endif
|