123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608 |
- /*
- * Copyright (c) 1995 Colin Plumb. All rights reserved.
- * For licensing and other legal details, see the file legal.c.
- *
- * Sophie Germain prime generation using the bignum library and sieving.
- */
- #ifndef HAVE_CONFIG_H
- #define HAVE_CONFIG_H 0
- #endif
- #if HAVE_CONFIG_H
- #include "bnconfig.h"
- #endif
- /*
- * Some compilers complain about #if FOO if FOO isn't defined,
- * so do the ANSI-mandated thing explicitly...
- */
- #ifndef NO_ASSERT_H
- #define NO_ASSERT_H 0
- #endif
- #if !NO_ASSERT_H
- #include <assert.h>
- #else
- #define assert(x) (void)0
- #endif
- #define BNDEBUG 1
- #ifndef BNDEBUG
- #define BNDEBUG 0
- #endif
- #if BNDEBUG
- #include <stdio.h>
- #endif
- #include "bn.h"
- #include "germain.h"
- #include "jacobi.h"
- #include "lbnmem.h" /* For lbnMemWipe */
- #include "sieve.h"
- #include "kludge.h"
- /* Size of the sieve area (can be up to 65536/8 = 8192) */
- #define SIEVE 8192
- static unsigned const confirm[] = {2, 3, 5, 7, 11, 13, 17};
- #define CONFIRMTESTS (sizeof(confirm)/sizeof(*confirm))
- #if BNDEBUG
- /*
- * For sanity checking the sieve, we check for small divisors of the numbers
- * we get back. This takes "rem", a partially reduced form of the prime,
- * "div" a divisor to check for, and "order", a parameter of the "order"
- * of Sophie Germain primes (0 = normal primes, 1 = Sophie Germain primes,
- * 2 = 4*p+3 is also prime, etc.) and does the check. It just complains
- * to stdout if the check fails.
- */
- static void
- germainSanity(unsigned rem, unsigned div, unsigned order)
- {
- unsigned mul = 1;
- rem %= div;
- if (!rem)
- printf("bn div by %u!\n", div);
- while (order--) {
- rem += rem+1;
- if (rem >= div)
- rem -= div;
- mul += mul;
- if (!rem)
- printf("%u*bn+%u div by %u!\n", mul, mul-1, div);
- }
- }
- #endif /* BNDEBUG */
- /*
- * Helper function that does the slow primality test.
- * bn is the input bignum; a, e and bn2 are temporary buffers that are
- * allocated by the caller to save overhead. bn2 is filled with
- * a copy of 2^order*bn+2^order-1 if bn is found to be prime.
- *
- * Returns 0 if both bn and bn2 are prime, >0 if not prime, and -1 on
- * error (out of memory). If not prime, the return value is the number
- * of modular exponentiations performed. Prints a '+' or '-' on the
- * given FILE (if any) for each test that is passed by bn, and a '*'
- * for each test that is passed by bn2.
- *
- * The testing consists of strong pseudoprimality tests, to the bases given
- * in the confirm[] array above. (Also called Miller-Rabin, although that's
- * not technically correct if we're using fixed bases.) Some people worry
- * that this might not be enough. Number theorists may wish to generate
- * primality proofs, but for random inputs, this returns non-primes with
- * a probability which is quite negligible, which is good enough.
- *
- * It has been proved (see Carl Pomerance, "On the Distribution of
- * Pseudoprimes", Math. Comp. v.37 (1981) pp. 587-593) that the number of
- * pseudoprimes (composite numbers that pass a Fermat test to the base 2)
- * less than x is bounded by:
- * exp(ln(x)^(5/14)) <= P_2(x) ### CHECK THIS FORMULA - it looks wrong! ###
- * P_2(x) <= x * exp(-1/2 * ln(x) * ln(ln(ln(x))) / ln(ln(x))).
- * Thus, the local density of Pseudoprimes near x is at most
- * exp(-1/2 * ln(x) * ln(ln(ln(x))) / ln(ln(x))), and at least
- * exp(ln(x)^(5/14) - ln(x)). Here are some values of this function
- * for various k-bit numbers x = 2^k:
- * Bits Density <= Bit equivalent Density >= Bit equivalent
- * 128 3.577869e-07 21.414396 4.202213e-37 120.840190
- * 192 4.175629e-10 31.157288 4.936250e-56 183.724558
- * 256 5.804314e-13 40.647940 4.977813e-75 246.829095
- * 384 1.578039e-18 59.136573 3.938861e-113 373.400096
- * 512 5.858255e-24 77.175803 2.563353e-151 500.253110
- * 768 1.489276e-34 112.370944 7.872825e-228 754.422724
- * 1024 6.633188e-45 146.757062 1.882404e-304 1008.953565
- *
- * As you can see, there's quite a bit of slop between these estimates.
- * In fact, the density of pseudoprimes is conjectured to be closer to the
- * square of that upper bound. E.g. the density of pseudoprimes of size
- * 256 is around 3 * 10^-27. The density of primes is very high, from
- * 0.005636 at 256 bits to 0.001409 at 1024 bits, i.e. more than 10^-3.
- *
- * For those people used to cryptographic levels of security where the
- * 56 bits of DES key space is too small because it's exhaustible with
- * custom hardware searching engines, note that you are not generating
- * 50,000,000 primes per second on each of 56,000 custom hardware chips
- * for several hours. The chances that another Dinosaur Killer asteroid
- * will land today is about 10^-11 or 2^-36, so it would be better to
- * spend your time worrying about *that*. Well, okay, there should be
- * some derating for the chance that astronomers haven't seen it yet,
- * but I think you get the idea. For a good feel about the probability
- * of various events, I have heard that a good book is by E'mile Borel,
- * "Les Probabilite's et la vie". (The 's are accents, not apostrophes.)
- *
- * For more on the subject, try "Finding Four Million Large Random Primes",
- * by Ronald Rivest, in Advancess in Cryptology: Proceedings of Crypto
- * '90. He used a small-divisor test, then a Fermat test to the base 2,
- * and then 8 iterations of a Miller-Rabin test. About 718 million random
- * 256-bit integers were generated, 43,741,404 passed the small divisor
- * test, 4,058,000 passed the Fermat test, and all 4,058,000 passed all
- * 8 iterations of the Miller-Rabin test, proving their primality beyond
- * most reasonable doubts.
- *
- * If the probability of getting a pseudoprime is some small p, then the
- * probability of not getting it in t trials is (1-p)^t. Remember that,
- * for small p, (1-p)^(1/p) ~ 1/e, the base of natural logarithms.
- * (This is more commonly expressed as e = lim_{x\to\infty} (1+1/x)^x.)
- * Thus, (1-p)^t ~ e^(-p*t) = exp(-p*t). So the odds of being able to
- * do this many tests without seeing a pseudoprime if you assume that
- * p = 10^-6 (one in a million) is one in 57.86. If you assume that
- * p = 2*10^-6, it's one in 3347.6. So it's implausible that the density
- * of pseudoprimes is much more than one millionth the density of primes.
- *
- * He also gives a theoretical argument that the chance of finding a
- * 256-bit non-prime which satisfies one Fermat test to the base 2 is
- * less than 10^-22. The small divisor test improves this number, and
- * if the numbers are 512 bits (as needed for a 1024-bit key) the odds
- * of failure shrink to about 10^-44. Thus, he concludes, for practical
- * purposes *one* Fermat test to the base 2 is sufficient.
- */
- static int
- germainPrimeTest(struct BigNum const *bn, struct BigNum *bn2, struct BigNum *e,
- struct BigNum *a, unsigned order, int (*f)(void *arg, int c), void *arg)
- {
- int err;
- unsigned i;
- int j;
- unsigned k, l, n;
- #if BNDEBUG /* Debugging */
- /*
- * This is debugging code to test the sieving stage.
- * If the sieving is wrong, it will let past numbers with
- * small divisors. The prime test here will still work, and
- * weed them out, but you'll be doing a lot more slow tests,
- * and presumably excluding from consideration some other numbers
- * which might be prime. This check just verifies that none
- * of the candidates have any small divisors. If this
- * code is enabled and never triggers, you can feel quite
- * confident that the sieving is doing its job.
- */
- i = bnLSWord(bn);
- if (!(i % 2)) printf("bn div by 2!");
- i = bnModQ(bn, 51051); /* 51051 = 3 * 7 * 11 * 13 * 17 */
- germainSanity(i, 3, order);
- germainSanity(i, 7, order);
- germainSanity(i, 11, order);
- germainSanity(i, 13, order);
- germainSanity(i, 17, order);
- i = bnModQ(bn, 63365); /* 63365 = 5 * 19 * 23 * 29 */
- germainSanity(i, 5, order);
- germainSanity(i, 19, order);
- germainSanity(i, 23, order);
- germainSanity(i, 29, order);
- i = bnModQ(bn, 47027); /* 47027 = 31 * 37 * 41 */
- germainSanity(i, 31, order);
- germainSanity(i, 37, order);
- germainSanity(i, 41, order);
- #endif
- /*
- * First, check whether bn is prime. This uses a fast primality
- * test which usually obviates the need to do one of the
- * confirmation tests later. See prime.c for a full explanation.
- * We check bn first because it's one bit smaller, saving one
- * modular squaring, and because we might be able to save another
- * when testing it. (1/4 of the time.) A small speed hack,
- * but finding big Sophie Germain primes is *slow*.
- */
- if (bnCopy(e, bn) < 0)
- return -1;
- (void)bnSubQ(e, 1);
- l = bnLSWord(e);
- j = 1; /* Where to start in prime array for strong prime tests */
- if (l & 7) {
- bnRShift(e, 1);
- if (bnTwoExpMod(a, e, bn) < 0)
- return -1;
- if ((l & 7) == 6) {
- /* bn == 7 mod 8, expect +1 */
- if (bnBits(a) != 1)
- return 1; /* Not prime */
- k = 1;
- } else {
- /* bn == 3 or 5 mod 8, expect -1 == bn-1 */
- if (bnAddQ(a, 1) < 0)
- return -1;
- if (bnCmp(a, bn) != 0)
- return 1; /* Not prime */
- k = 1;
- if (l & 4) {
- /* bn == 5 mod 8, make odd for strong tests */
- bnRShift(e, 1);
- k = 2;
- }
- }
- } else {
- /* bn == 1 mod 8, expect 2^((bn-1)/4) == +/-1 mod bn */
- bnRShift(e, 2);
- if (bnTwoExpMod(a, e, bn) < 0)
- return -1;
- if (bnBits(a) == 1) {
- j = 0; /* Re-do strong prime test to base 2 */
- } else {
- if (bnAddQ(a, 1) < 0)
- return -1;
- if (bnCmp(a, bn) != 0)
- return 1; /* Not prime */
- }
- k = 2 + bnMakeOdd(e);
- }
- /*
- * It's prime! Now check higher-order forms bn2 = 2*bn+1, 4*bn+3,
- * etc. Since bn2 == 3 mod 4, a strong pseudoprimality test boils
- * down to looking at a^((bn2-1)/2) mod bn and seeing if it's +/-1.
- * (+1 if bn2 is == 7 mod 8, -1 if it's == 3)
- * Of course, that exponent is just the previous bn2 or bn...
- */
- if (bnCopy(bn2, bn) < 0)
- return -1;
- for (n = 0; n < order; n++) {
- /*
- * Print a success indicator: the sign of Jacobi(2,bn2),
- * which is available to us in l. bn2 = 2*bn + 1. Since bn
- * is odd, bn2 must be == 3 mod 4, so the options modulo 8
- * are 3 and 7. 3 if l == 1 mod 4, 7 if l == 3 mod 4.
- * The sign of the Jacobi symbol is - and + for these cases,
- * respectively.
- */
- if (f && (err = f(arg, "-+"[(l >> 1) & 1])) < 0)
- return err;
- /* Exponent is previous bn2 */
- if (bnCopy(e, bn2) < 0 || bnLShift(bn2, 1) < 0)
- return -1;
- (void)bnAddQ(bn2, 1); /* Can't overflow */
- if (bnTwoExpMod(a, e, bn2) < 0)
- return -1;
- if (n | l) { /* Expect + */
- if (bnBits(a) != 1)
- return 2+n; /* Not prime */
- } else {
- if (bnAddQ(a, 1) < 0)
- return -1;
- if (bnCmp(a, bn2) != 0)
- return 2+n; /* Not prime */
- }
- l = bnLSWord(bn2);
- }
- /* Final success indicator - it's in the bag. */
- if (f && (err = f(arg, '*')) < 0)
- return err;
-
- /*
- * Success! We have found a prime! Now go on to confirmation
- * tests... k is an amount by which we know it's safe to shift
- * down e. j = 1 unless the test to the base 2 could stand to be
- * re-done (it wasn't *quite* a strong test), in which case it's 0.
- *
- * Here, we do the full strong pseudoprimality test. This proves
- * that a number is composite, or says that it's probably prime.
- *
- * For the given base a, find bn-1 = 2^k * e, then find
- * x == a^e (mod bn).
- * If x == +1 -> strong pseudoprime to base a
- * Otherwise, repeat k times:
- * If x == -1, -> strong pseudoprime
- * x = x^2 (mod bn)
- * If x = +1 -> composite
- * If we reach the end of the iteration and x is *not* +1, at the
- * end, it is composite. But it's also composite if the result
- * *is* +1. Which means that the squaring actually only has to
- * proceed k-1 times. If x is not -1 by then, it's composite
- * no matter what the result of the squaring is.
- *
- * For the multiples 2*bn+1, 4*bn+3, etc. then k = 1 (and e is
- * the previous multiple of bn) so the squaring loop is never
- * actually executed at all.
- */
- for (i = j; i < CONFIRMTESTS; i++) {
- if (bnCopy(e, bn) < 0)
- return -1;
- bnRShift(e, k);
- k += bnMakeOdd(e);
- (void)bnSetQ(a, confirm[i]);
- if (bnExpMod(a, a, e, bn) < 0)
- return -1;
- if (bnBits(a) != 1) {
- l = k;
- for (;;) {
- if (bnAddQ(a, 1) < 0)
- return -1;
- if (bnCmp(a, bn) == 0) /* Was result bn-1? */
- break; /* Prime */
- if (!--l)
- return (1+order)*i+2; /* Fail */
- /* This part is executed once, on average. */
- (void)bnSubQ(a, 1); /* Restore a */
- if (bnSquare(a, a) < 0 || bnMod(a, a, bn) < 0)
- return -1;
- if (bnBits(a) == 1)
- return (1+order)*i+1; /* Fail */
- }
- }
- if (bnCopy(bn2, bn) < 0)
- return -1;
-
- /* Only do the following if we're not re-doing base 2 */
- if (i) for (n = 0; n < order; n++) {
- if (bnCopy(e, bn2) < 0 || bnLShift(bn2, 1) < 0)
- return -1;
- (void)bnAddQ(bn2, 1);
- /* Print success indicator for previous test */
- j = bnJacobiQ(confirm[i], bn2);
- if (f && (err = f(arg, j < 0 ? '-' : '+')) < 0)
- return err;
- /* Check that p^e == Jacobi(p,bn2) (mod bn2) */
- (void)bnSetQ(a, confirm[i]);
- if (bnExpMod(a, a, e, bn2) < 0)
- return -1;
- /*
- * FIXME: Actually, we don't need to compute the
- * Jacobi symbol externally... it never happens that
- * a = +/-1 but it's the wrong one. So we can just
- * look at a and use its sign. Find a proof somewhere.
- */
- if (j < 0) {
- /* Not a Q.R., should have a = bn2-1 */
- if (bnAddQ(a, 1) < 0)
- return -1;
- if (bnCmp(a, bn2) != 0) /* Was result bn2-1? */
- return (1+order)*i+n+2; /* Fail */
- } else {
- /* Quadratic residue, should have a = 1 */
- if (bnBits(a) != 1)
- return (1+order)*i+n+2; /* Fail */
- }
- }
- /* Final success indicator for the base confirm[i]. */
- if (f && (err = f(arg, '*')) < 0)
- return err;
- }
- return 0; /* Prime! */
- }
- /*
- * Add x*y to bn, which is usually (but not always) < 65536.
- * Do it in a simple linear manner.
- */
- static int
- bnAddMult(struct BigNum *bn, unsigned long x, unsigned y)
- {
- unsigned long z = (unsigned long)x * y;
- while (z > 65535) {
- if (bnAddQ(bn, 65535) < 0)
- return -1;
- z -= 65535;
- }
- return bnAddQ(bn, (unsigned)z);
- }
- /*
- * Modifies the bignum to return the next Sophie Germain prime >= the
- * input value. Sohpie Germain primes are number such that p is
- * prime and 2*p+1 is also prime.
- *
- * This is actually parameterized: it generates primes p such that "order"
- * multiples-plus-two are also prime, 2*p+1, 2*(2*p+1)+1 = 4*p+3, etc.
- *
- * Returns >=0 on success or -1 on failure (out of memory). On success,
- * the return value is the number of modular exponentiations performed
- * (excluding the final confirmations). This never gives up searching.
- *
- * The FILE *f argument, if non-NULL, has progress indicators written
- * to it. A dot (.) is written every time a primeality test is failed,
- * a plus (+) or minus (-) when the smaller prime of the pair passes a
- * test, and a star (*) when the larger one does. Finally, a slash (/)
- * is printed when the sieve was emptied without finding a prime and is
- * being refilled.
- *
- * Apologies to structured programmers for all the GOTOs.
- */
- int
- germainPrimeGen(struct BigNum *bn, unsigned order,
- int (*f)(void *arg, int c), void *arg)
- {
- int retval;
- unsigned p, prev;
- unsigned inc;
- struct BigNum a, e, bn2;
- int modexps = 0;
- #ifdef MSDOS
- unsigned char *sieve;
- #else
- unsigned char sieve[SIEVE];
- #endif
- #ifdef MSDOS
- sieve = lbnMemAlloc(SIEVE);
- if (!sieve)
- return -1;
- #endif
- bnBegin(&a);
- bnBegin(&e);
- bnBegin(&bn2);
- /*
- * Obviously, the prime we find must be odd. Further, if 2*p+1
- * is also to be prime (order > 0) then p != 1 (mod 3), lest
- * 2*p+1 == 3 (mod 3). Added to p != 3 (mod 3), p == 2 (mod 3)
- * and p == 5 (mod 6).
- * If order > 2 and we care about 4*p+3 and 8*p+7, then similarly
- * p == 4 (mod 5), so p == 29 (mod 30).
- * So pick the step size for searching based on the order
- * and increse bn until it's == -1 (mod inc).
- *
- * mod 7 doesn't have a unique value for p because 2 -> 5 -> 4 -> 2,
- * nor does mod 11, and I don't want to think about things past
- * that. The required order would be impractically high, in any case.
- */
- inc = order ? ((order > 2) ? 30 : 6) : 2;
- if (bnAddQ(bn, inc-1 - bnModQ(bn, inc)) < 0)
- goto failed;
- for (;;) {
- if (sieveBuild(sieve, SIEVE, bn, inc, order) < 0)
- goto failed;
- p = prev = 0;
- if (sieve[0] & 1 || (p = sieveSearch(sieve, SIEVE, p)) != 0) {
- do {
- /* Adjust bn to have the right value. */
- assert(p >= prev);
- if (bnAddMult(bn, p-prev, inc) < 0)
- goto failed;
- prev = p;
- /* Okay, do the strong tests. */
- retval = germainPrimeTest(bn, &bn2, &e, &a,
- order, f, arg);
- if (retval <= 0)
- goto done;
- modexps += retval;
- if (f && (retval = f(arg, '.')) < 0)
- goto done;
- /* And try again */
- p = sieveSearch(sieve, SIEVE, p);
- } while (p);
- }
- /* Ran out of sieve space - increase bn and keep trying. */
- if (bnAddMult(bn, (unsigned long)SIEVE*8-prev, inc) < 0)
- goto failed;
- if (f && (retval = f(arg, '/')) < 0)
- goto done;
- } /* for (;;) */
- failed:
- retval = -1;
- done:
- bnEnd(&bn2);
- bnEnd(&e);
- bnEnd(&a);
- #ifdef MSDOS
- lbnMemFree(sieve, SIEVE);
- #else
- lbnMemWipe(sieve, sizeof(sieve));
- #endif
- return retval < 0 ? retval : modexps+(order+1)*CONFIRMTESTS;
- }
- int
- germainPrimeGenStrong(struct BigNum *bn, struct BigNum const *step,
- unsigned order, int (*f)(void *arg, int c), void *arg)
- {
- int retval;
- unsigned p, prev;
- struct BigNum a, e, bn2;
- int modexps = 0;
- #ifdef MSDOS
- unsigned char *sieve;
- #else
- unsigned char sieve[SIEVE];
- #endif
- #ifdef MSDOS
- sieve = lbnMemAlloc(SIEVE);
- if (!sieve)
- return -1;
- #endif
- bnBegin(&a);
- bnBegin(&e);
- bnBegin(&bn2);
- for (;;) {
- if (sieveBuildBig(sieve, SIEVE, bn, step, order) < 0)
- goto failed;
- p = prev = 0;
- if (sieve[0] & 1 || (p = sieveSearch(sieve, SIEVE, p)) != 0) {
- do {
- /*
- * Adjust bn to have the right value,
- * adding (p-prev) * 2*step.
- */
- assert(p >= prev);
- /* Compute delta into a */
- if (bnMulQ(&a, step, p-prev) < 0)
- goto failed;
- if (bnAdd(bn, &a) < 0)
- goto failed;
- prev = p;
- /* Okay, do the strong tests. */
- retval = germainPrimeTest(bn, &bn2, &e, &a,
- order, f, arg);
- if (retval <= 0)
- goto done;
- modexps += retval;
- if (f && (retval = f(arg, '.')) < 0)
- goto done;
- /* And try again */
- p = sieveSearch(sieve, SIEVE, p);
- } while (p);
- }
- /* Ran out of sieve space - increase bn and keep trying. */
- #if SIEVE*8 == 65536
- /* Corner case that will never actually happen */
- if (!prev) {
- if (bnAdd(bn, step) < 0)
- goto failed;
- p = 65535;
- } else {
- p = (unsigned)(SIEVE*8 - prev);
- }
- #else
- p = SIEVE*8 - prev;
- #endif
- if (bnMulQ(&a, step, p) < 0 || bnAdd(bn, &a) < 0)
- goto failed;
- if (f && (retval = f(arg, '/')) < 0)
- goto done;
- } /* for (;;) */
- failed:
- retval = -1;
- done:
- bnEnd(&bn2);
- bnEnd(&e);
- bnEnd(&a);
- #ifdef MSDOS
- lbnMemFree(sieve, SIEVE);
- #else
- lbnMemWipe(sieve, sizeof(sieve));
- #endif
- return retval < 0 ? retval : modexps+(order+1)*CONFIRMTESTS;
- }
|