123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380 |
- /*
- * Copyright (c) 1995 Colin Plumb. All rights reserved.
- * For licensing and other legal details, see the file legal.c.
- *
- * keygen.c - generate RSA key pairs using the bignum library.
- */
- #include "first.h"
- #include <assert.h>
- #include <stdio.h> /* For FILE type */
- #include <string.h> /* For memset */
- #include "bn.h"
- #include "prime.h"
- #include "keygen.h"
- #include "keys.h" /* Key structures */
- #include "random.h" /* Good random number generator */
- #if BNDEBUG
- #include "bnprint.h"
- #define bndPut(prompt, bn) bnPrint(stdout, prompt, bn, "\n")
- #define bndPrintf printf
- #else
- #define bndPut(prompt, bn) ((void)(prompt),(void)(bn))
- #define bndPrintf (void)
- #endif
- #include "kludge.h"
- /*
- * Generate a random bignum of a specified length, with the given
- * high and low 8 bits. "High" is merged into the high 8 bits of the
- * number. For example, set it to 0x80 to ensure that the number is
- * exactly "bits" bits long (i.e. 2^(bits-1) <= bn < 2^bits).
- * "Low" is merged into the low 8 bits. For example, set it to
- * 1 to ensure that you generate an odd number.
- */
- static int
- genRandBn(struct BigNum *bn, unsigned bits, byte high, byte low)
- {
- unsigned char buf[64];
- unsigned bytes;
- unsigned l;
- int err;
- bnSetQ(bn, 0);
- bytes = (bits+7) / 8;
- l = bytes < sizeof(buf) ? bytes : sizeof(buf);
- randBytes(buf, l);
- /* Mask off excess high bits */
- buf[0] &= 255 >> (-bits & 7);
- /* Merge in specified high bits */
- buf[0] |= high >> (-bits & 7);
- if (bits & 7)
- buf[1] |= high << (bits & 7);
- for (;;) {
- bytes -= l;
- if (!bytes) /* Last word - merge in low bits */
- buf[l-1] |= low;
- err = bnInsertBigBytes(bn, buf, bytes, l);
- if (!bytes || err < 0)
- break;
- l = bytes < sizeof(buf) ? bytes : sizeof(buf);
- randBytes(buf, l);
- }
- memset(buf, 0, sizeof(buf));
- return err;
- }
- /*
- * Generate a new RSA key, with the specified number of bits and
- * public exponent. The high two bits of each prime are always
- * set to make the number more difficult to factor by forcing the
- * number into the high end of the range.
- */
- struct Progress {
- FILE *f;
- unsigned column;
- unsigned wrap;
- };
- static int
- genProgress(void *arg, int c)
- {
- struct Progress *p = arg;
- if (++p->column > p->wrap) {
- putc('\n', p->f);
- p->column = 1;
- }
- putc(c, p->f);
- fflush(p->f);
- return 0;
- }
- int
- genRsaKey(struct PubKey *pub, struct SecKey *sec,
- unsigned bits, unsigned exp, FILE *file)
- {
- int modexps = 0;
- struct BigNum t; /* Temporary */
- int i;
- struct Progress progress;
- progress.f = file;
- progress.column = 0;
- progress.wrap = 78;
- if (bnSetQ(&pub->e, exp))
- return -1;
- /* Find p - choose a starting place */
- if (genRandBn(&sec->p, bits/2, 0xC0, 1) < 0)
- return -1;
- /* And search for a prime */
- i = primeGen(&sec->p, randRange, file ? genProgress : 0, &progress,
- exp, 0);
- if (i < 0)
- goto error;
- modexps = i;
- assert(bnModQ(&sec->p, exp) != 1);
- bndPut("p = ", &sec->p);
- do {
- /* Visual separator between the two progress indicators */
- if (file)
- genProgress(&progress, ' ');
- if (genRandBn(&sec->q, (bits+1)/2, 0xC0, 1) < 0)
- goto error;
- if (bnCopy(&pub->n, &sec->q) < 0)
- goto error;
- if (bnSub(&pub->n, &sec->p) < 0)
- goto error;
- /* Note that bnSub(a,b) returns abs(a-b) */
- } while (bnBits(&pub->n) < bits/2-5);
- if (file)
- fflush(file); /* Ensure the separators are visible */
- i = primeGen(&sec->q, randRange, file ? genProgress : 0, &progress,
- exp, 0);
- if (i < 0)
- goto error;
- modexps += i;
- assert(bnModQ(&sec->p, exp) != 1);
- bndPut("q = ", &sec->q);
- /* Wash the random number pool. */
- randFlush();
- /* Ensure that q is larger */
- if (bnCmp(&sec->p, &sec->q) > 0)
- bnSwap(&sec->p, &sec->q);
- bndPut("p = ", &sec->p);
- bndPut("q = ", &sec->q);
- /*
- * Now we dive into a large amount of fiddling to compute d,
- * the decryption exponent, from the encryption exponent.
- * We require that e*d == 1 (mod p-1) and e*d == 1 (mod q-1).
- * This can alomost be done via the Chinese Remainder Algorithm,
- * but it doesn't quite apply, because p-1 and q-1 are not
- * realitvely prime. Our task is to massage these into
- * two numbers a and b such that a*b = lcm(p-1,q-1) and
- * gcd(a,b) = 1. The technique is not well documented,
- * so I'll describe it here.
- * First, let d = gcd(p-1,q-1), then let a' = (p-1)/d and
- * b' = (q-1)/d. By the definition of the gcd, gcd(a',b') at
- * this point is 1, but a'*b' is a factor of d shy of the desired
- * value. We have to produce a = a' * d1 and b = b' * d2 such
- * d1*d2 = d and gcd(a,b) is 1. This will be the case iff
- * gcd(a,d2) = gcd(b,d1) = 1. Since GCD is associative and
- * (gcd(x,y,z) = gcd(x,gcd(y,z)) = gcd(gcd(x,y),z), etc.),
- * gcd(a',b') = 1 implies that gcd(a',b',d) = 1 which implies
- * that gcd(a',gcd(b',d)) = gcd(gcd(a',d),b') = 1. So you can
- * extract gcd(b',d) from d and make it part of d2, and the
- * same for d1. And iterate? A pessimal example is x = 2*6^k
- * and y = 3*6^k. gcd(x,y) = 6^k and we have to divvy it up
- * somehow so that all the factors of 2 go to x and all the
- * factors of 3 go to y, ending up with a = 2*2^k and b = 3*3^k.
- *
- * Aah, fuck it. It's simpler to do one big inverse for now.
- * Later I'll figure out how to get this to work properly.
- */
- /* Decrement q temporarily */
- (void)bnSubQ(&sec->q, 1);
- /* And u = p-1, to be divided by gcd(p-1,q-1) */
- if (bnCopy(&sec->u, &sec->p) < 0)
- goto error;
- (void)bnSubQ(&sec->u, 1);
- bndPut("p-1 = ", &sec->u);
- bndPut("q-1 = ", &sec->q);
- /* Use t to store gcd(p-1,q-1) */
- bnBegin(&t);
- if (bnGcd(&t, &sec->q, &sec->u) < 0) {
- bnEnd(&t);
- goto error;
- }
- bndPut("t = gcd(p-1,q-1) = ", &t);
- /* Let d = (p-1) / gcd(p-1,q-1) (n is scratch for the remainder) */
- i = bnDivMod(&sec->d, &pub->n, &sec->u, &t);
- bndPut("(p-1)/t = ", &sec->d);
- bndPut("(p-1)%t = ", &pub->n);
- bnEnd(&t);
- if (i < 0)
- goto error;
- assert(bnBits(&pub->n) == 0);
- /* Now we have q-1 and d = (p-1) / gcd(p-1,q-1) */
- /* Find the product, n = lcm(p-1,q-1) = c * d */
- if (bnMul(&pub->n, &sec->q, &sec->d) < 0)
- goto error;
- bndPut("(p-1)*(q-1)/t = ", &pub->n);
- /* Find the inverse of the exponent mod n */
- i = bnInv(&sec->d, &pub->e, &pub->n);
- bndPut("e = ", &pub->e);
- bndPut("d = ", &sec->d);
- if (i < 0)
- goto error;
- assert(!i); /* We should NOT get an error here */
- /*
- * Now we have the comparatively simple task of computing
- * u = p^-1 mod q.
- */
- #if BNDEBUG
- bnMul(&sec->u, &sec->d, &pub->e);
- bndPut("d * e = ", &sec->u);
- bnMod(&pub->n, &sec->u, &sec->q);
- bndPut("d * e = ", &sec->u);
- bndPut("q-1 = ", &sec->q);
- bndPut("d * e % (q-1)= ", &pub->n);
- bnNorm(&pub->n);
- bnSubQ(&sec->p, 1);
- bndPut("d * e = ", &sec->u);
- bnMod(&sec->u, &sec->u, &sec->p);
- bndPut("p-1 = ", &sec->p);
- bndPut("d * e % (p-1)= ", &sec->u);
- bnNorm(&sec->u);
- bnAddQ(&sec->p, 1);
- #endif
- /* But it *would* be nice to have q back first. */
- (void)bnAddQ(&sec->q, 1);
- bndPut("p = ", &sec->p);
- bndPut("q = ", &sec->q);
- /* Now compute u = p^-1 mod q */
- i = bnInv(&sec->u, &sec->p, &sec->q);
- if (i < 0)
- goto error;
- bndPut("u = p^-1 % q = ", &sec->u);
- assert(!i); /* p and q had better be relatively prime! */
- #if BNDEBUG
- bnMul(&pub->n, &sec->u, &sec->p);
- bndPut("u * p = ", &pub->n);
- bnMod(&pub->n, &pub->n, &sec->q);
- bndPut("u * p % q = ", &pub->n);
- bnNorm(&pub->n);
- #endif
- /* And finally, n = p * q */
- if (bnMul(&pub->n, &sec->p, &sec->q) < 0)
- goto error;
- bndPut("n = p * q = ", &pub->n);
- /* And that's it... success! */
- if (file)
- putc('\n', file); /* Signal done */
- return modexps;
- error:
- if (file)
- fputs("?\n", file); /* Signal error */
- return -1;
- }
- /*
- * Chinese Remainder Theorem refresher.
- * The theorem is actually that, "given x mod a, x mod b, x mod c, x mod d,
- * etc., the value of x mod lcm(a, b, c, d, ...) is uniquely determined",
- * But everyone seems to use the name "theorem" to refer to the algorithm
- * to put the number back together.
- *
- * Doing it for multiple numbers efficiently is a bit hairier, so I'll
- * just consider it for two moduli, a and b. We assume that the inputs
- * are in the canonical equivalence class (0 <= xa = x mod a < a, and
- * 0 <= xb = x mod b < b), and we want the output in the same form.
- *
- * First, divide one or the other by gcd(a,b) to reduce the problem to
- * one of relatively prime numbers. You'll have to reduce the corresponding
- * xa or xb modulo the new modulus.
- *
- * Then, note that if xa == x (mod a), then x = xa + a*k. The problem
- * lies in finding k so that xa + a*k == xb (mod b). Rearranging
- * gives a*k == xb - xa (mod b), and then multiplying both sides by
- * a^-1, the inverse of a mod b, gives k == a^-1 * (xb-xa) (mod b).
- * If k is reduced mod b, then xa + a*k <= (a-1) + a * (b-1) =
- * a + a*(b-1) - 1 = a*b - 1, which is exactly as it should be to
- * be reduced mod a*b. And if all the inputs are >= 0, the output
- * will be non-negative.
- *
- * For multiple numbers, you can get the number into a similar mixed-
- * radix form x = xa + a*(k1 + b*(k2 + c*(k3 +...))). All the math
- * to do this is modulo the small numbers (and thus faster); only the
- * final summing has to be performed at large sizes. For the greatest
- * efficiency, order the numbers so a > b > c >..., so as many computations
- * as possible are small.
- *
- * So the total procedure for two numbers is:
- * - Let a be the larger and b be the smaller of the numbers.
- * - Divide b by gcd(a,b) to make it even smaller.
- * - Find a^-1 mod b.
- * - Find (xb-xa) mod b.
- * - Multiply (xb-xa) by a^-1, modulo b.
- * - Multiply that by a, without any modular reduction
- * - Add xa.
- */
- #if 0
- /* A simple test driver */
- #include "bnprint.h"
- #include <time.h>
- int
- main(void)
- {
- struct BigNum p, q, d, u;
- int i;
- clock_t interval;
- static unsigned const sizetable[] = {
- 384, 512, 513, 514, 515, 768, 1024, 1536, 2048, 0
- };
- unsigned const *sizeptr = sizetable;
- bnInit();
- bnRandSeed(1);
- bnBegin(&p);
- bnBegin(&q);
- bnBegin(&d);
- bnBegin(&u);
- while (*sizeptr) {
- printf("Generating a %u-bit RSA key\n", *sizeptr);
- interval = clock();
- i = genRsaKey(&p, &q, &d, &u, *sizeptr, 17, stdout);
- interval = clock() - interval;
- printf("genRsaKey returned %d. %ld.%06ld s\n", i,
- interval / 1000000, interval % 1000000);
- fputs("p = ", stdout);
- bnPrint(stdout, &p);
- fputs("\nq = ", stdout);
- bnPrint(stdout, &q);
- fputs("\nd = ", stdout);
- bnPrint(stdout, &d);
- fputs("\nu = ", stdout);
- bnPrint(stdout, &u);
- putchar('\n');
- sizeptr++;
- }
- bnEnd(&p);
- bnEnd(&q);
- bnEnd(&d);
- bnEnd(&u);
- return 0;
- }
- #endif
|