123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- /*
- * SpanDSP - a series of DSP components for telephony
- *
- * awgn_tests.c
- *
- * Written by Steve Underwood <steveu@coppice.org>
- *
- * Copyright (C) 2001 Steve Underwood
- *
- * All rights reserved.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2, as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*! \page awgn_tests_page AWGN tests
- \section awgn_tests_page_sec_1 What does it do?
- */
- #if defined(HAVE_CONFIG_H)
- #include "config.h"
- #endif
- #include <stdlib.h>
- #include <stdio.h>
- #include <string.h>
- #define SPANDSP_EXPOSE_INTERNAL_STRUCTURES
- #include "spandsp.h"
- #if !defined(M_PI)
- # define M_PI 3.14159265358979323846 /* pi */
- #endif
- #define OUT_FILE_NAME "awgn.wav"
- /* Some simple sanity tests for the Gaussian noise generation routines */
- int main(int argc, char *argv[])
- {
- int i;
- int j;
- int clip_high;
- int clip_low;
- int total_samples;
- int idum = 1234567;
- int16_t value;
- double total;
- double x;
- double p;
- double o;
- double error;
- int bins[65536];
- awgn_state_t *noise_source;
- /* Generate noise at several RMS levels between -50dBm and 0dBm. Noise is
- generated for a large number of samples (1,000,000), and the RMS value
- of the noise is calculated along the way. If the resulting level is
- close to the requested RMS level, at least the scaling of the noise
- should be Ok. At high level some clipping may distort the result a
- little. */
- for (j = -50; j <= 0; j += 5)
- {
- clip_high = 0;
- clip_low = 0;
- total = 0.0;
- if ((noise_source = awgn_init_dbm0(NULL, idum, (float) j)) == NULL)
- {
- printf("Failed to allocate AWGN source\n");
- exit(2);
- }
- total_samples = 1000000;
- for (i = 0; i < total_samples; i++)
- {
- value = awgn(noise_source);
- if (value == 32767)
- clip_high++;
- else if (value == -32768)
- clip_low++;
- total += ((double) value)*((double) value);
- }
- error = 100.0*(1.0 - sqrt(total/total_samples)/noise_source->rms);
- printf("RMS = %.3f (expected %d) %.2f%% error [clipped samples %d+%d]\n",
- 10.0*log10((total/total_samples)/(32768.0*32768.0) + 1.0e-10) + DBM0_MAX_POWER,
- j,
- error,
- clip_low,
- clip_high);
- /* We don't check the result at 0dBm0, as there will definitely be a lot of error due to clipping */
- if (j < 0 && fabs(error) > 0.2)
- {
- printf("Test failed.\n");
- exit(2);
- }
- awgn_free(noise_source);
- }
- /* Now look at the statistical spread of the results, by collecting data in
- bins from a large number of samples. Use a fairly high noise level, but
- low enough to avoid significant clipping. Use the Gaussian model to
- predict the real probability, and present the results for graphing. */
- memset(bins, 0, sizeof(bins));
- clip_high = 0;
- clip_low = 0;
- if ((noise_source = awgn_init_dbm0(NULL, idum, -15.0)) == NULL)
- {
- printf("Failed to allocate AWGN source\n");
- exit(2);
- }
- total_samples = 10000000;
- for (i = 0; i < total_samples; i++)
- {
- value = awgn(noise_source);
- if (value == 32767)
- clip_high++;
- else if (value == -32768)
- clip_low++;
- bins[value + 32768]++;
- }
- o = noise_source->rms;
- for (i = 0; i < 65536 - 10; i++)
- {
- x = i - 32768;
- /* Find the real probability for this bin */
- p = (1.0/(o*sqrt(2.0*M_PI)))*exp(-(x*x)/(2.0*o*o));
- /* Now do a little smoothing on the real data to get a reasonably
- steady answer */
- x = 0;
- for (j = 0; j < 10; j++)
- x += bins[i + j];
- x /= 10.0;
- x /= total_samples;
- /* Now send it out for graphing. */
- printf("%6d %.7f %.7f\n", i - 32768, x, p);
- }
- awgn_free(noise_source);
- printf("Tests passed.\n");
- return 0;
- }
- /*- End of function --------------------------------------------------------*/
- /*- End of file ------------------------------------------------------------*/
|