/* * Copyright (c) 2002, Christopher Clark * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of the original author; nor the names of any contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libks/ks.h" #include "libks/ks_hash.h" struct entry { void *k, *v; unsigned int h; ks_hash_flag_t flags; ks_hash_destructor_t destructor; struct entry *next; }; struct ks_hash_iterator { unsigned int pos; ks_locked_t locked; struct entry *e; struct ks_hash *h; }; struct ks_hash { unsigned int tablelength; struct entry **table; unsigned int entrycount; unsigned int loadlimit; unsigned int primeindex; unsigned int (*hashfn) (void *k); int (*eqfn) (void *k1, void *k2); ks_hash_flag_t flags; ks_hash_destructor_t destructor; ks_rwl_t *rwl; ks_mutex_t *mutex; uint32_t readers; ks_size_t keysize; ks_hash_mode_t mode; }; /*****************************************************************************/ /*****************************************************************************/ static inline unsigned int hash(ks_hash_t *h, const void *k) { unsigned int i; switch (h->mode) { case KS_HASH_MODE_ARBITRARY: i = ks_hash_default_arbitrary(k, h->keysize, 13); break; case KS_HASH_MODE_INT: case KS_HASH_MODE_INT64: case KS_HASH_MODE_PTR: i = h->hashfn((void *)&k); break; case KS_HASH_MODE_UUID: default: i = h->hashfn((void *)k); break; } /* Aim to protect against poor hash functions by adding logic here * - logic taken from java 1.4 hash source */ i += ~(i << 9); i ^= ((i >> 14) | (i << 18)); /* >>> */ i += (i << 4); i ^= ((i >> 10) | (i << 22)); /* >>> */ return i; } /*****************************************************************************/ /* indexFor */ static __inline__ unsigned int indexFor(unsigned int tablelength, unsigned int hashvalue) { return (hashvalue % tablelength); } /* Only works if tablelength == 2^N */ /*static inline unsigned int indexFor(unsigned int tablelength, unsigned int hashvalue) { return (hashvalue & (tablelength - 1u)); } */ /*****************************************************************************/ //#define freekey(X) free(X) /* Credit for primes table: Aaron Krowne http://br.endernet.org/~akrowne/ http://planetmath.org/encyclopedia/GoodKs_HashPrimes.html */ static const unsigned int primes[] = { 53, 97, 193, 389, 769, 1543, 3079, 6151, 12289, 24593, 49157, 98317, 196613, 393241, 786433, 1572869, 3145739, 6291469, 12582917, 25165843, 50331653, 100663319, 201326611, 402653189, 805306457, 1610612741 }; const unsigned int prime_table_length = sizeof(primes)/sizeof(primes[0]); const float max_load_factor = 0.65f; /*****************************************************************************/ static void ks_hash_cleanup(void *ptr, void *arg, ks_pool_cleanup_action_t action, ks_pool_cleanup_type_t type) { //ks_hash_t *hash = (ks_hash_t *) ptr; switch(action) { case KS_MPCL_ANNOUNCE: break; case KS_MPCL_TEARDOWN: break; case KS_MPCL_DESTROY: //ks_hash_destroy(&hash); break; } } KS_DECLARE(ks_status_t) ks_hash_create(ks_hash_t **hp, ks_hash_mode_t mode, ks_hash_flag_t flags, ks_pool_t *pool) { return ks_hash_create_ex(hp, 16, NULL, NULL, mode, flags, NULL, pool); } KS_DECLARE(void) ks_hash_set_flags(ks_hash_t *h, ks_hash_flag_t flags) { h->flags = flags; } KS_DECLARE(void) ks_hash_set_keysize(ks_hash_t *h, ks_size_t keysize) { h->keysize = keysize; } KS_DECLARE(void) ks_hash_set_destructor(ks_hash_t *h, ks_hash_destructor_t destructor) { h->destructor = destructor; } KS_DECLARE(ks_status_t) ks_hash_create_ex( ks_hash_t **hp, unsigned int minsize, unsigned int (*hashf) (void*), int (*eqf) (void*,void*), ks_hash_mode_t mode, ks_hash_flag_t flags, ks_hash_destructor_t destructor, ks_pool_t *pool) { ks_hash_t *h; unsigned int pindex, size = primes[0]; ks_size_t keysize = 0; switch(mode) { case KS_HASH_MODE_CASE_INSENSITIVE: ks_assert(hashf == NULL); hashf = ks_hash_default_ci; break; case KS_HASH_MODE_INT: ks_assert(hashf == NULL); ks_assert(eqf == NULL); hashf = ks_hash_default_int; eqf = ks_hash_equalkeys_int; keysize = 4; break; case KS_HASH_MODE_INT64: ks_assert(hashf == NULL); ks_assert(eqf == NULL); hashf = ks_hash_default_int64; eqf = ks_hash_equalkeys_int64; keysize = 8; break; case KS_HASH_MODE_UUID: ks_assert(hashf == NULL); ks_assert(eqf == NULL); hashf = ks_hash_default_uuid; eqf = ks_hash_equalkeys_uuid; keysize = sizeof(uuid_t); break; case KS_HASH_MODE_PTR: ks_assert(hashf == NULL); ks_assert(eqf == NULL); hashf = ks_hash_default_ptr; eqf = ks_hash_equalkeys_ptr; keysize = sizeof(void *); break; case KS_HASH_MODE_ARBITRARY: keysize = sizeof(void *); break; default: break; } if ((flags & KS_HASH_FLAG_NOLOCK)) { flags &= ~KS_HASH_FLAG_RWLOCK; } ks_assert(pool); if (!hashf) hashf = ks_hash_default; if (!eqf) eqf = ks_hash_equalkeys; if (!minsize) minsize = 16; /* Check requested ks_hash isn't too large */ if (minsize > (1u << 30)) {*hp = NULL; return KS_STATUS_FAIL;} /* Enforce size as prime */ for (pindex=0; pindex < prime_table_length; pindex++) { if (primes[pindex] > minsize) { size = primes[pindex]; break; } } h = (ks_hash_t *) ks_pool_alloc(pool, sizeof(ks_hash_t)); h->flags = flags; h->destructor = destructor; h->keysize = keysize; h->mode = mode; if ((flags & KS_HASH_FLAG_RWLOCK)) { ks_rwl_create(&h->rwl, pool); } if (!(flags & KS_HASH_FLAG_NOLOCK)) { ks_mutex_create(&h->mutex, KS_MUTEX_FLAG_DEFAULT, pool); } if (NULL == h) abort(); /*oom*/ h->table = (struct entry **)ks_pool_alloc(pool, sizeof(struct entry*) * size); if (NULL == h->table) abort(); /*oom*/ //memset(h->table, 0, size * sizeof(struct entry *)); h->tablelength = size; h->primeindex = pindex; h->entrycount = 0; h->hashfn = hashf; h->eqfn = eqf; h->loadlimit = (unsigned int) ceil(size * max_load_factor); *hp = h; ks_pool_set_cleanup(h, NULL, ks_hash_cleanup); return KS_STATUS_SUCCESS; } /*****************************************************************************/ static int ks_hash_expand(ks_hash_t *h) { /* Double the size of the table to accomodate more entries */ struct entry **newtable; struct entry *e; struct entry **pE; unsigned int newsize, i, index; /* Check we're not hitting max capacity */ if (h->primeindex == (prime_table_length - 1)) return 0; newsize = primes[++(h->primeindex)]; newtable = (struct entry **)ks_pool_alloc(ks_pool_get(h), sizeof(struct entry*) * newsize); if (NULL != newtable) { memset(newtable, 0, newsize * sizeof(struct entry *)); /* This algorithm is not 'stable'. ie. it reverses the list * when it transfers entries between the tables */ for (i = 0; i < h->tablelength; i++) { while (NULL != (e = h->table[i])) { h->table[i] = e->next; index = indexFor(newsize,e->h); e->next = newtable[index]; newtable[index] = e; } } ks_pool_free(&h->table); h->table = newtable; } /* Plan B: realloc instead */ else { newtable = (struct entry **) ks_pool_resize(h->table, newsize * sizeof(struct entry *)); if (NULL == newtable) { (h->primeindex)--; return 0; } h->table = newtable; memset(newtable[h->tablelength], 0, newsize - h->tablelength); for (i = 0; i < h->tablelength; i++) { for (pE = &(newtable[i]), e = *pE; e != NULL; e = *pE) { index = indexFor(newsize,e->h); if (index == i) { pE = &(e->next); } else { *pE = e->next; e->next = newtable[index]; newtable[index] = e; } } } } h->tablelength = newsize; h->loadlimit = (unsigned int) ceil(newsize * max_load_factor); return -1; } /*****************************************************************************/ KS_DECLARE(unsigned int) ks_hash_count(ks_hash_t *h) { return h->entrycount; } static int key_equals(ks_hash_t *h, const void * const k1, const void * const k2) { switch (h->mode) { case KS_HASH_MODE_ARBITRARY: return !memcmp(k1, k2, h->keysize); case KS_HASH_MODE_INT: case KS_HASH_MODE_INT64: case KS_HASH_MODE_PTR: return h->eqfn((void *)&k1, (void *)&k2); case KS_HASH_MODE_UUID: return h->eqfn((void *)k1, (void *)k2); default: break; } return h->eqfn((void *)k1, (void *)k2); } static void * _ks_hash_remove(ks_hash_t *h, const void * const k, unsigned int hashvalue, unsigned int index) { /* TODO: consider compacting the table when the load factor drops enough, * or provide a 'compact' method. */ struct entry *e; struct entry **pE; void *v; pE = &(h->table[index]); e = *pE; while (NULL != e) { /* Check hash value to short circuit heavier comparison */ if ((hashvalue == e->h) && (key_equals(h, k, e->k))) { *pE = e->next; h->entrycount--; v = e->v; if (e->flags & KS_HASH_FLAG_FREE_KEY) { ks_pool_free(&e->k); } if (e->flags & KS_HASH_FLAG_FREE_VALUE) { ks_pool_free(&e->v); v = NULL; } else if (e->destructor) { e->destructor(e->v); v = e->v = NULL; } else if (h->destructor) { h->destructor(e->v); v = e->v = NULL; } ks_pool_free(&e); return v; } pE = &(e->next); e = e->next; } return NULL; } /*****************************************************************************/ KS_DECLARE(ks_status_t) ks_hash_insert_ex(ks_hash_t *h, const void * const k, const void * const v, ks_hash_flag_t flags, ks_hash_destructor_t destructor) { struct entry *e; unsigned int hashvalue = hash(h, k); unsigned int index = indexFor(h->tablelength, hashvalue); ks_hash_write_lock(h); if (!flags) { flags = h->flags; } if (flags & KS_HASH_FLAG_DUP_CHECK) { _ks_hash_remove(h, k, hashvalue, index); } if (++(h->entrycount) > h->loadlimit) { /* Ignore the return value. If expand fails, we should * still try cramming just this value into the existing table * -- we may not have memory for a larger table, but one more * element may be ok. Next time we insert, we'll try expanding again.*/ ks_hash_expand(h); index = indexFor(h->tablelength, hashvalue); } e = (struct entry *)ks_pool_alloc(ks_pool_get(h), sizeof(struct entry)); e->h = hashvalue; e->k = (void *)k; e->v = (void *)v; e->flags = flags; e->destructor = destructor; e->next = h->table[index]; h->table[index] = e; ks_hash_write_unlock(h); return KS_STATUS_SUCCESS; } KS_DECLARE(void) ks_hash_write_lock(ks_hash_t *h) { if ((h->flags & KS_HASH_FLAG_NOLOCK)) { return; } else if ((h->flags & KS_HASH_FLAG_RWLOCK)) { ks_rwl_write_lock(h->rwl); } else { ks_mutex_lock(h->mutex); } } KS_DECLARE(void) ks_hash_write_unlock(ks_hash_t *h) { if ((h->flags & KS_HASH_FLAG_NOLOCK)) { return; } else if ((h->flags & KS_HASH_FLAG_RWLOCK)) { ks_rwl_write_unlock(h->rwl); } else { ks_mutex_unlock(h->mutex); } } KS_DECLARE(ks_status_t) ks_hash_read_lock(ks_hash_t *h) { if (!(h->flags & KS_HASH_FLAG_RWLOCK)) { return KS_STATUS_INACTIVE; } ks_rwl_read_lock(h->rwl); ks_mutex_lock(h->mutex); h->readers++; ks_mutex_unlock(h->mutex); return KS_STATUS_SUCCESS; } KS_DECLARE(ks_status_t) ks_hash_read_unlock(ks_hash_t *h) { if (!(h->flags & KS_HASH_FLAG_RWLOCK)) { return KS_STATUS_INACTIVE; } ks_mutex_lock(h->mutex); ks_assert(h->readers != 0); h->readers--; ks_mutex_unlock(h->mutex); ks_rwl_read_unlock(h->rwl); return KS_STATUS_SUCCESS; } /*****************************************************************************/ KS_DECLARE(void *) /* returns value associated with key */ ks_hash_search(ks_hash_t *h, const void *k, ks_locked_t locked) { struct entry *e; unsigned int hashvalue, index; void *v = NULL; ks_assert(locked != KS_READLOCKED || (h->flags & KS_HASH_FLAG_RWLOCK)); hashvalue = hash(h,k); index = indexFor(h->tablelength,hashvalue); if (locked == KS_READLOCKED) { ks_rwl_read_lock(h->rwl); ks_mutex_lock(h->mutex); h->readers++; ks_mutex_unlock(h->mutex); } e = h->table[index]; while (NULL != e) { /* Check hash value to short circuit heavier comparison */ if ((hashvalue == e->h) && (key_equals(h, (void *)k, e->k))) { v = e->v; break; } e = e->next; } return v; } /*****************************************************************************/ /* returns value associated with key */ KS_DECLARE(void *) ks_hash_remove(ks_hash_t *h, const void * const k) { void *v; unsigned int hashvalue = hash(h,k); ks_hash_write_lock(h); v = _ks_hash_remove(h, k, hashvalue, indexFor(h->tablelength,hashvalue)); ks_hash_write_unlock(h); return v; } /*****************************************************************************/ /* destroy */ KS_DECLARE(void) ks_hash_destroy(ks_hash_t **h) { unsigned int i; struct entry *e, *f; struct entry **table; if (!h || !*h) return; table = (*h)->table; ks_hash_write_lock(*h); for (i = 0; i < (*h)->tablelength; i++) { e = table[i]; while (NULL != e) { f = e; e = e->next; if (f->flags & KS_HASH_FLAG_FREE_KEY) { ks_pool_free(&f->k); } if (f->flags & KS_HASH_FLAG_FREE_VALUE) { ks_pool_free(&f->v); } else if (f->destructor) { f->destructor(f->v); f->v = NULL; } else if ((*h)->destructor) { (*h)->destructor(f->v); f->v = NULL; } ks_pool_free(&f); } } ks_pool_free(&(*h)->table); ks_hash_write_unlock(*h); if ((*h)->rwl) ks_pool_free(&(*h)->rwl); if ((*h)->mutex) { ks_pool_free(&(*h)->mutex); } ks_pool_free(&(*h)); *h = NULL; } KS_DECLARE(void) ks_hash_last(ks_hash_iterator_t **iP) { ks_hash_iterator_t *i = *iP; if (i->locked == KS_READLOCKED) { ks_mutex_lock(i->h->mutex); i->h->readers--; ks_mutex_unlock(i->h->mutex); ks_rwl_read_unlock(i->h->rwl); } ks_pool_free(&i); *iP = NULL; } KS_DECLARE(ks_hash_iterator_t *) ks_hash_next(ks_hash_iterator_t **iP) { ks_hash_iterator_t *i = *iP; if (i->e) { if ((i->e = i->e->next) != 0) { return i; } else { i->pos++; } } while(i->pos < i->h->tablelength && !i->h->table[i->pos]) { i->pos++; } if (i->pos >= i->h->tablelength) { goto end; } if ((i->e = i->h->table[i->pos]) != 0) { return i; } end: ks_hash_last(iP); return NULL; } KS_DECLARE(ks_hash_iterator_t *) ks_hash_first(ks_hash_t *h, ks_locked_t locked) { ks_hash_iterator_t *iterator; ks_assert(locked != KS_READLOCKED || (h->flags & KS_HASH_FLAG_RWLOCK)); iterator = ks_pool_alloc(ks_pool_get(h), sizeof(*iterator)); ks_assert(iterator); iterator->pos = 0; iterator->e = NULL; iterator->h = h; if (locked == KS_READLOCKED) { ks_rwl_read_lock(h->rwl); iterator->locked = locked; ks_mutex_lock(h->mutex); h->readers++; ks_mutex_unlock(h->mutex); } return ks_hash_next(&iterator); } KS_DECLARE(void) ks_hash_this_val(ks_hash_iterator_t *i, void *val) { if (i->e) { i->e->v = val; } } KS_DECLARE(void) ks_hash_this(ks_hash_iterator_t *i, const void **key, ks_ssize_t *klen, void **val) { if (i->e) { if (key) { *key = i->e->k; } if (klen) { *klen = (int)strlen(i->e->k); } if (val) { *val = i->e->v; } } else { if (key) { *key = NULL; } if (klen) { *klen = 0; } if (val) { *val = NULL; } } } /* For Emacs: * Local Variables: * mode:c * indent-tabs-mode:t * tab-width:4 * c-basic-offset:4 * End: * For VIM: * vim:set softtabstop=4 shiftwidth=4 tabstop=4 noet: */