start_server {tags {"zset"}} { proc create_zset {key items} { r del $key foreach {score entry} $items { r zadd $key $score $entry } } proc basics {encoding} { if {$encoding == "ziplist"} { r config set zset-max-ziplist-entries 128 r config set zset-max-ziplist-value 64 } elseif {$encoding == "skiplist"} { r config set zset-max-ziplist-entries 0 r config set zset-max-ziplist-value 0 } else { puts "Unknown sorted set encoding" exit } test "Check encoding - $encoding" { r del ztmp r zadd ztmp 10 x assert_encoding $encoding ztmp } test "ZSET basic ZADD and score update - $encoding" { r del ztmp r zadd ztmp 10 x r zadd ztmp 20 y r zadd ztmp 30 z assert_equal {x y z} [r zrange ztmp 0 -1] r zadd ztmp 1 y assert_equal {y x z} [r zrange ztmp 0 -1] } test "ZSET element can't be set to NaN with ZADD - $encoding" { assert_error "*not*float*" {r zadd myzset nan abc} } test "ZSET element can't be set to NaN with ZINCRBY" { assert_error "*not*float*" {r zadd myzset nan abc} } test "ZADD with options syntax error with incomplete pair" { r del ztmp catch {r zadd ztmp xx 10 x 20} err set err } {ERR*} test "ZADD XX option without key - $encoding" { r del ztmp assert {[r zadd ztmp xx 10 x] == 0} assert {[r type ztmp] eq {none}} } test "ZADD XX existing key - $encoding" { r del ztmp r zadd ztmp 10 x assert {[r zadd ztmp xx 20 y] == 0} assert {[r zcard ztmp] == 1} } test "ZADD XX returns the number of elements actually added" { r del ztmp r zadd ztmp 10 x set retval [r zadd ztmp 10 x 20 y 30 z] assert {$retval == 2} } test "ZADD XX updates existing elements score" { r del ztmp r zadd ztmp 10 x 20 y 30 z r zadd ztmp xx 5 foo 11 x 21 y 40 zap assert {[r zcard ztmp] == 3} assert {[r zscore ztmp x] == 11} assert {[r zscore ztmp y] == 21} } test "ZADD XX and NX are not compatible" { r del ztmp catch {r zadd ztmp xx nx 10 x} err set err } {ERR*} test "ZADD NX with non existing key" { r del ztmp r zadd ztmp nx 10 x 20 y 30 z assert {[r zcard ztmp] == 3} } test "ZADD NX only add new elements without updating old ones" { r del ztmp r zadd ztmp 10 x 20 y 30 z assert {[r zadd ztmp nx 11 x 21 y 100 a 200 b] == 2} assert {[r zscore ztmp x] == 10} assert {[r zscore ztmp y] == 20} assert {[r zscore ztmp a] == 100} assert {[r zscore ztmp b] == 200} } test "ZADD INCR works like ZINCRBY" { r del ztmp r zadd ztmp 10 x 20 y 30 z r zadd ztmp INCR 15 x assert {[r zscore ztmp x] == 25} } test "ZADD INCR works with a single score-elemenet pair" { r del ztmp r zadd ztmp 10 x 20 y 30 z catch {r zadd ztmp INCR 15 x 10 y} err set err } {ERR*} test "ZADD CH option changes return value to all changed elements" { r del ztmp r zadd ztmp 10 x 20 y 30 z assert {[r zadd ztmp 11 x 21 y 30 z] == 0} assert {[r zadd ztmp ch 12 x 22 y 30 z] == 2} } test "ZINCRBY calls leading to NaN result in error" { r zincrby myzset +inf abc assert_error "*NaN*" {r zincrby myzset -inf abc} } test {ZADD - Variadic version base case} { r del myzset list [r zadd myzset 10 a 20 b 30 c] [r zrange myzset 0 -1 withscores] } {3 {a 10 b 20 c 30}} test {ZADD - Return value is the number of actually added items} { list [r zadd myzset 5 x 20 b 30 c] [r zrange myzset 0 -1 withscores] } {1 {x 5 a 10 b 20 c 30}} test {ZADD - Variadic version does not add nothing on single parsing err} { r del myzset catch {r zadd myzset 10 a 20 b 30.badscore c} e assert_match {*ERR*not*float*} $e r exists myzset } {0} test {ZADD - Variadic version will raise error on missing arg} { r del myzset catch {r zadd myzset 10 a 20 b 30 c 40} e assert_match {*ERR*syntax*} $e } test {ZINCRBY does not work variadic even if shares ZADD implementation} { r del myzset catch {r zincrby myzset 10 a 20 b 30 c} e assert_match {*ERR*wrong*number*arg*} $e } test "ZCARD basics - $encoding" { r del ztmp r zadd ztmp 10 a 20 b 30 c assert_equal 3 [r zcard ztmp] assert_equal 0 [r zcard zdoesntexist] } test "ZREM removes key after last element is removed" { r del ztmp r zadd ztmp 10 x r zadd ztmp 20 y assert_equal 1 [r exists ztmp] assert_equal 0 [r zrem ztmp z] assert_equal 1 [r zrem ztmp y] assert_equal 1 [r zrem ztmp x] assert_equal 0 [r exists ztmp] } test "ZREM variadic version" { r del ztmp r zadd ztmp 10 a 20 b 30 c assert_equal 2 [r zrem ztmp x y a b k] assert_equal 0 [r zrem ztmp foo bar] assert_equal 1 [r zrem ztmp c] r exists ztmp } {0} test "ZREM variadic version -- remove elements after key deletion" { r del ztmp r zadd ztmp 10 a 20 b 30 c r zrem ztmp a b c d e f g } {3} test "ZRANGE basics - $encoding" { r del ztmp r zadd ztmp 1 a r zadd ztmp 2 b r zadd ztmp 3 c r zadd ztmp 4 d assert_equal {a b c d} [r zrange ztmp 0 -1] assert_equal {a b c} [r zrange ztmp 0 -2] assert_equal {b c d} [r zrange ztmp 1 -1] assert_equal {b c} [r zrange ztmp 1 -2] assert_equal {c d} [r zrange ztmp -2 -1] assert_equal {c} [r zrange ztmp -2 -2] # out of range start index assert_equal {a b c} [r zrange ztmp -5 2] assert_equal {a b} [r zrange ztmp -5 1] assert_equal {} [r zrange ztmp 5 -1] assert_equal {} [r zrange ztmp 5 -2] # out of range end index assert_equal {a b c d} [r zrange ztmp 0 5] assert_equal {b c d} [r zrange ztmp 1 5] assert_equal {} [r zrange ztmp 0 -5] assert_equal {} [r zrange ztmp 1 -5] # withscores assert_equal {a 1 b 2 c 3 d 4} [r zrange ztmp 0 -1 withscores] } test "ZREVRANGE basics - $encoding" { r del ztmp r zadd ztmp 1 a r zadd ztmp 2 b r zadd ztmp 3 c r zadd ztmp 4 d assert_equal {d c b a} [r zrevrange ztmp 0 -1] assert_equal {d c b} [r zrevrange ztmp 0 -2] assert_equal {c b a} [r zrevrange ztmp 1 -1] assert_equal {c b} [r zrevrange ztmp 1 -2] assert_equal {b a} [r zrevrange ztmp -2 -1] assert_equal {b} [r zrevrange ztmp -2 -2] # out of range start index assert_equal {d c b} [r zrevrange ztmp -5 2] assert_equal {d c} [r zrevrange ztmp -5 1] assert_equal {} [r zrevrange ztmp 5 -1] assert_equal {} [r zrevrange ztmp 5 -2] # out of range end index assert_equal {d c b a} [r zrevrange ztmp 0 5] assert_equal {c b a} [r zrevrange ztmp 1 5] assert_equal {} [r zrevrange ztmp 0 -5] assert_equal {} [r zrevrange ztmp 1 -5] # withscores assert_equal {d 4 c 3 b 2 a 1} [r zrevrange ztmp 0 -1 withscores] } test "ZRANK/ZREVRANK basics - $encoding" { r del zranktmp r zadd zranktmp 10 x r zadd zranktmp 20 y r zadd zranktmp 30 z assert_equal 0 [r zrank zranktmp x] assert_equal 1 [r zrank zranktmp y] assert_equal 2 [r zrank zranktmp z] assert_equal "" [r zrank zranktmp foo] assert_equal 2 [r zrevrank zranktmp x] assert_equal 1 [r zrevrank zranktmp y] assert_equal 0 [r zrevrank zranktmp z] assert_equal "" [r zrevrank zranktmp foo] } test "ZRANK - after deletion - $encoding" { r zrem zranktmp y assert_equal 0 [r zrank zranktmp x] assert_equal 1 [r zrank zranktmp z] } test "ZINCRBY - can create a new sorted set - $encoding" { r del zset r zincrby zset 1 foo assert_equal {foo} [r zrange zset 0 -1] assert_equal 1 [r zscore zset foo] } test "ZINCRBY - increment and decrement - $encoding" { r zincrby zset 2 foo r zincrby zset 1 bar assert_equal {bar foo} [r zrange zset 0 -1] r zincrby zset 10 bar r zincrby zset -5 foo r zincrby zset -5 bar assert_equal {foo bar} [r zrange zset 0 -1] assert_equal -2 [r zscore zset foo] assert_equal 6 [r zscore zset bar] } test "ZINCRBY return value" { r del ztmp set retval [r zincrby ztmp 1.0 x] assert {$retval == 1.0} } proc create_default_zset {} { create_zset zset {-inf a 1 b 2 c 3 d 4 e 5 f +inf g} } test "ZRANGEBYSCORE/ZREVRANGEBYSCORE/ZCOUNT basics" { create_default_zset # inclusive range assert_equal {a b c} [r zrangebyscore zset -inf 2] assert_equal {b c d} [r zrangebyscore zset 0 3] assert_equal {d e f} [r zrangebyscore zset 3 6] assert_equal {e f g} [r zrangebyscore zset 4 +inf] assert_equal {c b a} [r zrevrangebyscore zset 2 -inf] assert_equal {d c b} [r zrevrangebyscore zset 3 0] assert_equal {f e d} [r zrevrangebyscore zset 6 3] assert_equal {g f e} [r zrevrangebyscore zset +inf 4] assert_equal 3 [r zcount zset 0 3] # exclusive range assert_equal {b} [r zrangebyscore zset (-inf (2] assert_equal {b c} [r zrangebyscore zset (0 (3] assert_equal {e f} [r zrangebyscore zset (3 (6] assert_equal {f} [r zrangebyscore zset (4 (+inf] assert_equal {b} [r zrevrangebyscore zset (2 (-inf] assert_equal {c b} [r zrevrangebyscore zset (3 (0] assert_equal {f e} [r zrevrangebyscore zset (6 (3] assert_equal {f} [r zrevrangebyscore zset (+inf (4] assert_equal 2 [r zcount zset (0 (3] # test empty ranges r zrem zset a r zrem zset g # inclusive assert_equal {} [r zrangebyscore zset 4 2] assert_equal {} [r zrangebyscore zset 6 +inf] assert_equal {} [r zrangebyscore zset -inf -6] assert_equal {} [r zrevrangebyscore zset +inf 6] assert_equal {} [r zrevrangebyscore zset -6 -inf] # exclusive assert_equal {} [r zrangebyscore zset (4 (2] assert_equal {} [r zrangebyscore zset 2 (2] assert_equal {} [r zrangebyscore zset (2 2] assert_equal {} [r zrangebyscore zset (6 (+inf] assert_equal {} [r zrangebyscore zset (-inf (-6] assert_equal {} [r zrevrangebyscore zset (+inf (6] assert_equal {} [r zrevrangebyscore zset (-6 (-inf] # empty inner range assert_equal {} [r zrangebyscore zset 2.4 2.6] assert_equal {} [r zrangebyscore zset (2.4 2.6] assert_equal {} [r zrangebyscore zset 2.4 (2.6] assert_equal {} [r zrangebyscore zset (2.4 (2.6] } test "ZRANGEBYSCORE with WITHSCORES" { create_default_zset assert_equal {b 1 c 2 d 3} [r zrangebyscore zset 0 3 withscores] assert_equal {d 3 c 2 b 1} [r zrevrangebyscore zset 3 0 withscores] } test "ZRANGEBYSCORE with LIMIT" { create_default_zset assert_equal {b c} [r zrangebyscore zset 0 10 LIMIT 0 2] assert_equal {d e f} [r zrangebyscore zset 0 10 LIMIT 2 3] assert_equal {d e f} [r zrangebyscore zset 0 10 LIMIT 2 10] assert_equal {} [r zrangebyscore zset 0 10 LIMIT 20 10] assert_equal {f e} [r zrevrangebyscore zset 10 0 LIMIT 0 2] assert_equal {d c b} [r zrevrangebyscore zset 10 0 LIMIT 2 3] assert_equal {d c b} [r zrevrangebyscore zset 10 0 LIMIT 2 10] assert_equal {} [r zrevrangebyscore zset 10 0 LIMIT 20 10] } test "ZRANGEBYSCORE with LIMIT and WITHSCORES" { create_default_zset assert_equal {e 4 f 5} [r zrangebyscore zset 2 5 LIMIT 2 3 WITHSCORES] assert_equal {d 3 c 2} [r zrevrangebyscore zset 5 2 LIMIT 2 3 WITHSCORES] } test "ZRANGEBYSCORE with non-value min or max" { assert_error "*not*float*" {r zrangebyscore fooz str 1} assert_error "*not*float*" {r zrangebyscore fooz 1 str} assert_error "*not*float*" {r zrangebyscore fooz 1 NaN} } proc create_default_lex_zset {} { create_zset zset {0 alpha 0 bar 0 cool 0 down 0 elephant 0 foo 0 great 0 hill 0 omega} } test "ZRANGEBYLEX/ZREVRANGEBYLEX/ZLEXCOUNT basics" { create_default_lex_zset # inclusive range assert_equal {alpha bar cool} [r zrangebylex zset - \[cool] assert_equal {bar cool down} [r zrangebylex zset \[bar \[down] assert_equal {great hill omega} [r zrangebylex zset \[g +] assert_equal {cool bar alpha} [r zrevrangebylex zset \[cool -] assert_equal {down cool bar} [r zrevrangebylex zset \[down \[bar] assert_equal {omega hill great foo elephant down} [r zrevrangebylex zset + \[d] assert_equal 3 [r zlexcount zset \[ele \[h] # exclusive range assert_equal {alpha bar} [r zrangebylex zset - (cool] assert_equal {cool} [r zrangebylex zset (bar (down] assert_equal {hill omega} [r zrangebylex zset (great +] assert_equal {bar alpha} [r zrevrangebylex zset (cool -] assert_equal {cool} [r zrevrangebylex zset (down (bar] assert_equal {omega hill} [r zrevrangebylex zset + (great] assert_equal 2 [r zlexcount zset (ele (great] # inclusive and exclusive assert_equal {} [r zrangebylex zset (az (b] assert_equal {} [r zrangebylex zset (z +] assert_equal {} [r zrangebylex zset - \[aaaa] assert_equal {} [r zrevrangebylex zset \[elez \[elex] assert_equal {} [r zrevrangebylex zset (hill (omega] } test "ZLEXCOUNT advanced" { create_default_lex_zset assert_equal 9 [r zlexcount zset - +] assert_equal 0 [r zlexcount zset + -] assert_equal 0 [r zlexcount zset + \[c] assert_equal 0 [r zlexcount zset \[c -] assert_equal 8 [r zlexcount zset \[bar +] assert_equal 5 [r zlexcount zset \[bar \[foo] assert_equal 4 [r zlexcount zset \[bar (foo] assert_equal 4 [r zlexcount zset (bar \[foo] assert_equal 3 [r zlexcount zset (bar (foo] assert_equal 5 [r zlexcount zset - (foo] assert_equal 1 [r zlexcount zset (maxstring +] } test "ZRANGEBYSLEX with LIMIT" { create_default_lex_zset assert_equal {alpha bar} [r zrangebylex zset - \[cool LIMIT 0 2] assert_equal {bar cool} [r zrangebylex zset - \[cool LIMIT 1 2] assert_equal {} [r zrangebylex zset \[bar \[down LIMIT 0 0] assert_equal {} [r zrangebylex zset \[bar \[down LIMIT 2 0] assert_equal {bar} [r zrangebylex zset \[bar \[down LIMIT 0 1] assert_equal {cool} [r zrangebylex zset \[bar \[down LIMIT 1 1] assert_equal {bar cool down} [r zrangebylex zset \[bar \[down LIMIT 0 100] assert_equal {omega hill great foo elephant} [r zrevrangebylex zset + \[d LIMIT 0 5] assert_equal {omega hill great foo} [r zrevrangebylex zset + \[d LIMIT 0 4] } test "ZRANGEBYLEX with invalid lex range specifiers" { assert_error "*not*string*" {r zrangebylex fooz foo bar} assert_error "*not*string*" {r zrangebylex fooz \[foo bar} assert_error "*not*string*" {r zrangebylex fooz foo \[bar} assert_error "*not*string*" {r zrangebylex fooz +x \[bar} assert_error "*not*string*" {r zrangebylex fooz -x \[bar} } test "ZREMRANGEBYSCORE basics" { proc remrangebyscore {min max} { create_zset zset {1 a 2 b 3 c 4 d 5 e} assert_equal 1 [r exists zset] r zremrangebyscore zset $min $max } # inner range assert_equal 3 [remrangebyscore 2 4] assert_equal {a e} [r zrange zset 0 -1] # start underflow assert_equal 1 [remrangebyscore -10 1] assert_equal {b c d e} [r zrange zset 0 -1] # end overflow assert_equal 1 [remrangebyscore 5 10] assert_equal {a b c d} [r zrange zset 0 -1] # switch min and max assert_equal 0 [remrangebyscore 4 2] assert_equal {a b c d e} [r zrange zset 0 -1] # -inf to mid assert_equal 3 [remrangebyscore -inf 3] assert_equal {d e} [r zrange zset 0 -1] # mid to +inf assert_equal 3 [remrangebyscore 3 +inf] assert_equal {a b} [r zrange zset 0 -1] # -inf to +inf assert_equal 5 [remrangebyscore -inf +inf] assert_equal {} [r zrange zset 0 -1] # exclusive min assert_equal 4 [remrangebyscore (1 5] assert_equal {a} [r zrange zset 0 -1] assert_equal 3 [remrangebyscore (2 5] assert_equal {a b} [r zrange zset 0 -1] # exclusive max assert_equal 4 [remrangebyscore 1 (5] assert_equal {e} [r zrange zset 0 -1] assert_equal 3 [remrangebyscore 1 (4] assert_equal {d e} [r zrange zset 0 -1] # exclusive min and max assert_equal 3 [remrangebyscore (1 (5] assert_equal {a e} [r zrange zset 0 -1] # destroy when empty assert_equal 5 [remrangebyscore 1 5] assert_equal 0 [r exists zset] } test "ZREMRANGEBYSCORE with non-value min or max" { assert_error "*not*float*" {r zremrangebyscore fooz str 1} assert_error "*not*float*" {r zremrangebyscore fooz 1 str} assert_error "*not*float*" {r zremrangebyscore fooz 1 NaN} } test "ZREMRANGEBYRANK basics" { proc remrangebyrank {min max} { create_zset zset {1 a 2 b 3 c 4 d 5 e} assert_equal 1 [r exists zset] r zremrangebyrank zset $min $max } # inner range assert_equal 3 [remrangebyrank 1 3] assert_equal {a e} [r zrange zset 0 -1] # start underflow assert_equal 1 [remrangebyrank -10 0] assert_equal {b c d e} [r zrange zset 0 -1] # start overflow assert_equal 0 [remrangebyrank 10 -1] assert_equal {a b c d e} [r zrange zset 0 -1] # end underflow assert_equal 0 [remrangebyrank 0 -10] assert_equal {a b c d e} [r zrange zset 0 -1] # end overflow assert_equal 5 [remrangebyrank 0 10] assert_equal {} [r zrange zset 0 -1] # destroy when empty assert_equal 5 [remrangebyrank 0 4] assert_equal 0 [r exists zset] } test "ZUNIONSTORE against non-existing key doesn't set destination - $encoding" { r del zseta assert_equal 0 [r zunionstore dst_key 1 zseta] assert_equal 0 [r exists dst_key] } test "ZUNIONSTORE with empty set - $encoding" { r del zseta zsetb r zadd zseta 1 a r zadd zseta 2 b r zunionstore zsetc 2 zseta zsetb r zrange zsetc 0 -1 withscores } {a 1 b 2} test "ZUNIONSTORE basics - $encoding" { r del zseta zsetb zsetc r zadd zseta 1 a r zadd zseta 2 b r zadd zseta 3 c r zadd zsetb 1 b r zadd zsetb 2 c r zadd zsetb 3 d assert_equal 4 [r zunionstore zsetc 2 zseta zsetb] assert_equal {a 1 b 3 d 3 c 5} [r zrange zsetc 0 -1 withscores] } test "ZUNIONSTORE with weights - $encoding" { assert_equal 4 [r zunionstore zsetc 2 zseta zsetb weights 2 3] assert_equal {a 2 b 7 d 9 c 12} [r zrange zsetc 0 -1 withscores] } test "ZUNIONSTORE with a regular set and weights - $encoding" { r del seta r sadd seta a r sadd seta b r sadd seta c assert_equal 4 [r zunionstore zsetc 2 seta zsetb weights 2 3] assert_equal {a 2 b 5 c 8 d 9} [r zrange zsetc 0 -1 withscores] } test "ZUNIONSTORE with AGGREGATE MIN - $encoding" { assert_equal 4 [r zunionstore zsetc 2 zseta zsetb aggregate min] assert_equal {a 1 b 1 c 2 d 3} [r zrange zsetc 0 -1 withscores] } test "ZUNIONSTORE with AGGREGATE MAX - $encoding" { assert_equal 4 [r zunionstore zsetc 2 zseta zsetb aggregate max] assert_equal {a 1 b 2 c 3 d 3} [r zrange zsetc 0 -1 withscores] } test "ZINTERSTORE basics - $encoding" { assert_equal 2 [r zinterstore zsetc 2 zseta zsetb] assert_equal {b 3 c 5} [r zrange zsetc 0 -1 withscores] } test "ZINTERSTORE with weights - $encoding" { assert_equal 2 [r zinterstore zsetc 2 zseta zsetb weights 2 3] assert_equal {b 7 c 12} [r zrange zsetc 0 -1 withscores] } test "ZINTERSTORE with a regular set and weights - $encoding" { r del seta r sadd seta a r sadd seta b r sadd seta c assert_equal 2 [r zinterstore zsetc 2 seta zsetb weights 2 3] assert_equal {b 5 c 8} [r zrange zsetc 0 -1 withscores] } test "ZINTERSTORE with AGGREGATE MIN - $encoding" { assert_equal 2 [r zinterstore zsetc 2 zseta zsetb aggregate min] assert_equal {b 1 c 2} [r zrange zsetc 0 -1 withscores] } test "ZINTERSTORE with AGGREGATE MAX - $encoding" { assert_equal 2 [r zinterstore zsetc 2 zseta zsetb aggregate max] assert_equal {b 2 c 3} [r zrange zsetc 0 -1 withscores] } foreach cmd {ZUNIONSTORE ZINTERSTORE} { test "$cmd with +inf/-inf scores - $encoding" { r del zsetinf1 zsetinf2 r zadd zsetinf1 +inf key r zadd zsetinf2 +inf key r $cmd zsetinf3 2 zsetinf1 zsetinf2 assert_equal inf [r zscore zsetinf3 key] r zadd zsetinf1 -inf key r zadd zsetinf2 +inf key r $cmd zsetinf3 2 zsetinf1 zsetinf2 assert_equal 0 [r zscore zsetinf3 key] r zadd zsetinf1 +inf key r zadd zsetinf2 -inf key r $cmd zsetinf3 2 zsetinf1 zsetinf2 assert_equal 0 [r zscore zsetinf3 key] r zadd zsetinf1 -inf key r zadd zsetinf2 -inf key r $cmd zsetinf3 2 zsetinf1 zsetinf2 assert_equal -inf [r zscore zsetinf3 key] } test "$cmd with NaN weights $encoding" { r del zsetinf1 zsetinf2 r zadd zsetinf1 1.0 key r zadd zsetinf2 1.0 key assert_error "*weight*not*float*" { r $cmd zsetinf3 2 zsetinf1 zsetinf2 weights nan nan } } } test "Basic ZPOP with a single key - $encoding" { r del zset assert_equal {} [r zpopmin zset] create_zset zset {-1 a 1 b 2 c 3 d 4 e} assert_equal {a -1} [r zpopmin zset] assert_equal {b 1} [r zpopmin zset] assert_equal {e 4} [r zpopmax zset] assert_equal {d 3} [r zpopmax zset] assert_equal {c 2} [r zpopmin zset] assert_equal 0 [r exists zset] r set foo bar assert_error "*WRONGTYPE*" {r zpopmin foo} } test "ZPOP with count - $encoding" { r del z1 z2 z3 foo r set foo bar assert_equal {} [r zpopmin z1 2] assert_error "*WRONGTYPE*" {r zpopmin foo 2} create_zset z1 {0 a 1 b 2 c 3 d} assert_equal {a 0 b 1} [r zpopmin z1 2] assert_equal {d 3 c 2} [r zpopmax z1 2] } test "BZPOP with a single existing sorted set - $encoding" { set rd [redis_deferring_client] create_zset zset {0 a 1 b 2 c} $rd bzpopmin zset 5 assert_equal {zset a 0} [$rd read] $rd bzpopmin zset 5 assert_equal {zset b 1} [$rd read] $rd bzpopmax zset 5 assert_equal {zset c 2} [$rd read] assert_equal 0 [r exists zset] } test "BZPOP with multiple existing sorted sets - $encoding" { set rd [redis_deferring_client] create_zset z1 {0 a 1 b 2 c} create_zset z2 {3 d 4 e 5 f} $rd bzpopmin z1 z2 5 assert_equal {z1 a 0} [$rd read] $rd bzpopmax z1 z2 5 assert_equal {z1 c 2} [$rd read] assert_equal 1 [r zcard z1] assert_equal 3 [r zcard z2] $rd bzpopmax z2 z1 5 assert_equal {z2 f 5} [$rd read] $rd bzpopmin z2 z1 5 assert_equal {z2 d 3} [$rd read] assert_equal 1 [r zcard z1] assert_equal 1 [r zcard z2] } test "BZPOP second sorted set has members - $encoding" { set rd [redis_deferring_client] r del z1 create_zset z2 {3 d 4 e 5 f} $rd bzpopmax z1 z2 5 assert_equal {z2 f 5} [$rd read] $rd bzpopmin z2 z1 5 assert_equal {z2 d 3} [$rd read] assert_equal 0 [r zcard z1] assert_equal 1 [r zcard z2] } } basics ziplist basics skiplist test {ZINTERSTORE regression with two sets, intset+hashtable} { r del seta setb setc r sadd set1 a r sadd set2 10 r zinterstore set3 2 set1 set2 } {0} test {ZUNIONSTORE regression, should not create NaN in scores} { r zadd z -inf neginf r zunionstore out 1 z weights 0 r zrange out 0 -1 withscores } {neginf 0} test {ZINTERSTORE #516 regression, mixed sets and ziplist zsets} { r sadd one 100 101 102 103 r sadd two 100 200 201 202 r zadd three 1 500 1 501 1 502 1 503 1 100 r zinterstore to_here 3 one two three WEIGHTS 0 0 1 r zrange to_here 0 -1 } {100} test {ZUNIONSTORE result is sorted} { # Create two sets with common and not common elements, perform # the UNION, check that elements are still sorted. r del one two dest set cmd1 [list r zadd one] set cmd2 [list r zadd two] for {set j 0} {$j < 1000} {incr j} { lappend cmd1 [expr rand()] [randomInt 1000] lappend cmd2 [expr rand()] [randomInt 1000] } {*}$cmd1 {*}$cmd2 assert {[r zcard one] > 100} assert {[r zcard two] > 100} r zunionstore dest 2 one two set oldscore 0 foreach {ele score} [r zrange dest 0 -1 withscores] { assert {$score >= $oldscore} set oldscore $score } } test "ZSET commands don't accept the empty strings as valid score" { assert_error "*not*float*" {r zadd myzset "" abc} } proc stressers {encoding} { if {$encoding == "ziplist"} { # Little extra to allow proper fuzzing in the sorting stresser r config set zset-max-ziplist-entries 256 r config set zset-max-ziplist-value 64 set elements 128 } elseif {$encoding == "skiplist"} { r config set zset-max-ziplist-entries 0 r config set zset-max-ziplist-value 0 if {$::accurate} {set elements 1000} else {set elements 100} } else { puts "Unknown sorted set encoding" exit } test "ZSCORE - $encoding" { r del zscoretest set aux {} for {set i 0} {$i < $elements} {incr i} { set score [expr rand()] lappend aux $score r zadd zscoretest $score $i } assert_encoding $encoding zscoretest for {set i 0} {$i < $elements} {incr i} { assert_equal [lindex $aux $i] [r zscore zscoretest $i] } } test "ZSCORE after a DEBUG RELOAD - $encoding" { r del zscoretest set aux {} for {set i 0} {$i < $elements} {incr i} { set score [expr rand()] lappend aux $score r zadd zscoretest $score $i } r debug reload assert_encoding $encoding zscoretest for {set i 0} {$i < $elements} {incr i} { assert_equal [lindex $aux $i] [r zscore zscoretest $i] } } test "ZSET sorting stresser - $encoding" { set delta 0 for {set test 0} {$test < 2} {incr test} { unset -nocomplain auxarray array set auxarray {} set auxlist {} r del myzset for {set i 0} {$i < $elements} {incr i} { if {$test == 0} { set score [expr rand()] } else { set score [expr int(rand()*10)] } set auxarray($i) $score r zadd myzset $score $i # Random update if {[expr rand()] < .2} { set j [expr int(rand()*1000)] if {$test == 0} { set score [expr rand()] } else { set score [expr int(rand()*10)] } set auxarray($j) $score r zadd myzset $score $j } } foreach {item score} [array get auxarray] { lappend auxlist [list $score $item] } set sorted [lsort -command zlistAlikeSort $auxlist] set auxlist {} foreach x $sorted { lappend auxlist [lindex $x 1] } assert_encoding $encoding myzset set fromredis [r zrange myzset 0 -1] set delta 0 for {set i 0} {$i < [llength $fromredis]} {incr i} { if {[lindex $fromredis $i] != [lindex $auxlist $i]} { incr delta } } } assert_equal 0 $delta } test "ZRANGEBYSCORE fuzzy test, 100 ranges in $elements element sorted set - $encoding" { set err {} r del zset for {set i 0} {$i < $elements} {incr i} { r zadd zset [expr rand()] $i } assert_encoding $encoding zset for {set i 0} {$i < 100} {incr i} { set min [expr rand()] set max [expr rand()] if {$min > $max} { set aux $min set min $max set max $aux } set low [r zrangebyscore zset -inf $min] set ok [r zrangebyscore zset $min $max] set high [r zrangebyscore zset $max +inf] set lowx [r zrangebyscore zset -inf ($min] set okx [r zrangebyscore zset ($min ($max] set highx [r zrangebyscore zset ($max +inf] if {[r zcount zset -inf $min] != [llength $low]} { append err "Error, len does not match zcount\n" } if {[r zcount zset $min $max] != [llength $ok]} { append err "Error, len does not match zcount\n" } if {[r zcount zset $max +inf] != [llength $high]} { append err "Error, len does not match zcount\n" } if {[r zcount zset -inf ($min] != [llength $lowx]} { append err "Error, len does not match zcount\n" } if {[r zcount zset ($min ($max] != [llength $okx]} { append err "Error, len does not match zcount\n" } if {[r zcount zset ($max +inf] != [llength $highx]} { append err "Error, len does not match zcount\n" } foreach x $low { set score [r zscore zset $x] if {$score > $min} { append err "Error, score for $x is $score > $min\n" } } foreach x $lowx { set score [r zscore zset $x] if {$score >= $min} { append err "Error, score for $x is $score >= $min\n" } } foreach x $ok { set score [r zscore zset $x] if {$score < $min || $score > $max} { append err "Error, score for $x is $score outside $min-$max range\n" } } foreach x $okx { set score [r zscore zset $x] if {$score <= $min || $score >= $max} { append err "Error, score for $x is $score outside $min-$max open range\n" } } foreach x $high { set score [r zscore zset $x] if {$score < $max} { append err "Error, score for $x is $score < $max\n" } } foreach x $highx { set score [r zscore zset $x] if {$score <= $max} { append err "Error, score for $x is $score <= $max\n" } } } assert_equal {} $err } test "ZRANGEBYLEX fuzzy test, 100 ranges in $elements element sorted set - $encoding" { set lexset {} r del zset for {set j 0} {$j < $elements} {incr j} { set e [randstring 0 30 alpha] lappend lexset $e r zadd zset 0 $e } set lexset [lsort -unique $lexset] for {set j 0} {$j < 100} {incr j} { set min [randstring 0 30 alpha] set max [randstring 0 30 alpha] set mininc [randomInt 2] set maxinc [randomInt 2] if {$mininc} {set cmin "\[$min"} else {set cmin "($min"} if {$maxinc} {set cmax "\[$max"} else {set cmax "($max"} set rev [randomInt 2] if {$rev} { set cmd zrevrangebylex } else { set cmd zrangebylex } # Make sure data is the same in both sides assert {[r zrange zset 0 -1] eq $lexset} # Get the Redis output set output [r $cmd zset $cmin $cmax] if {$rev} { set outlen [r zlexcount zset $cmax $cmin] } else { set outlen [r zlexcount zset $cmin $cmax] } # Compute the same output via Tcl set o {} set copy $lexset if {(!$rev && [string compare $min $max] > 0) || ($rev && [string compare $max $min] > 0)} { # Empty output when ranges are inverted. } else { if {$rev} { # Invert the Tcl array using Redis itself. set copy [r zrevrange zset 0 -1] # Invert min / max as well lassign [list $min $max $mininc $maxinc] \ max min maxinc mininc } foreach e $copy { set mincmp [string compare $e $min] set maxcmp [string compare $e $max] if { ($mininc && $mincmp >= 0 || !$mininc && $mincmp > 0) && ($maxinc && $maxcmp <= 0 || !$maxinc && $maxcmp < 0) } { lappend o $e } } } assert {$o eq $output} assert {$outlen eq [llength $output]} } } test "ZREMRANGEBYLEX fuzzy test, 100 ranges in $elements element sorted set - $encoding" { set lexset {} r del zset zsetcopy for {set j 0} {$j < $elements} {incr j} { set e [randstring 0 30 alpha] lappend lexset $e r zadd zset 0 $e } set lexset [lsort -unique $lexset] for {set j 0} {$j < 100} {incr j} { # Copy... r zunionstore zsetcopy 1 zset set lexsetcopy $lexset set min [randstring 0 30 alpha] set max [randstring 0 30 alpha] set mininc [randomInt 2] set maxinc [randomInt 2] if {$mininc} {set cmin "\[$min"} else {set cmin "($min"} if {$maxinc} {set cmax "\[$max"} else {set cmax "($max"} # Make sure data is the same in both sides assert {[r zrange zset 0 -1] eq $lexset} # Get the range we are going to remove set torem [r zrangebylex zset $cmin $cmax] set toremlen [r zlexcount zset $cmin $cmax] r zremrangebylex zsetcopy $cmin $cmax set output [r zrange zsetcopy 0 -1] # Remove the range with Tcl from the original list if {$toremlen} { set first [lsearch -exact $lexsetcopy [lindex $torem 0]] set last [expr {$first+$toremlen-1}] set lexsetcopy [lreplace $lexsetcopy $first $last] } assert {$lexsetcopy eq $output} } } test "ZSETs skiplist implementation backlink consistency test - $encoding" { set diff 0 for {set j 0} {$j < $elements} {incr j} { r zadd myzset [expr rand()] "Element-$j" r zrem myzset "Element-[expr int(rand()*$elements)]" } assert_encoding $encoding myzset set l1 [r zrange myzset 0 -1] set l2 [r zrevrange myzset 0 -1] for {set j 0} {$j < [llength $l1]} {incr j} { if {[lindex $l1 $j] ne [lindex $l2 end-$j]} { incr diff } } assert_equal 0 $diff } test "ZSETs ZRANK augmented skip list stress testing - $encoding" { set err {} r del myzset for {set k 0} {$k < 2000} {incr k} { set i [expr {$k % $elements}] if {[expr rand()] < .2} { r zrem myzset $i } else { set score [expr rand()] r zadd myzset $score $i assert_encoding $encoding myzset } set card [r zcard myzset] if {$card > 0} { set index [randomInt $card] set ele [lindex [r zrange myzset $index $index] 0] set rank [r zrank myzset $ele] if {$rank != $index} { set err "$ele RANK is wrong! ($rank != $index)" break } } } assert_equal {} $err } test "BZPOPMIN, ZADD + DEL should not awake blocked client" { set rd [redis_deferring_client] r del zset $rd bzpopmin zset 0 r multi r zadd zset 0 foo r del zset r exec r del zset r zadd zset 1 bar $rd read } {zset bar 1} test "BZPOPMIN, ZADD + DEL + SET should not awake blocked client" { set rd [redis_deferring_client] r del list r del zset $rd bzpopmin zset 0 r multi r zadd zset 0 foo r del zset r set zset foo r exec r del zset r zadd zset 1 bar $rd read } {zset bar 1} test "BZPOPMIN with same key multiple times should work" { set rd [redis_deferring_client] r del z1 z2 # Data arriving after the BZPOPMIN. $rd bzpopmin z1 z2 z2 z1 0 r zadd z1 0 a assert_equal [$rd read] {z1 a 0} $rd bzpopmin z1 z2 z2 z1 0 r zadd z2 1 b assert_equal [$rd read] {z2 b 1} # Data already there. r zadd z1 0 a r zadd z2 1 b $rd bzpopmin z1 z2 z2 z1 0 assert_equal [$rd read] {z1 a 0} $rd bzpopmin z1 z2 z2 z1 0 assert_equal [$rd read] {z2 b 1} } test "MULTI/EXEC is isolated from the point of view of BZPOPMIN" { set rd [redis_deferring_client] r del zset $rd bzpopmin zset 0 r multi r zadd zset 0 a r zadd zset 1 b r zadd zset 2 c r exec $rd read } {zset a 0} test "BZPOPMIN with variadic ZADD" { set rd [redis_deferring_client] r del zset if {$::valgrind} {after 100} $rd bzpopmin zset 0 if {$::valgrind} {after 100} assert_equal 2 [r zadd zset -1 foo 1 bar] if {$::valgrind} {after 100} assert_equal {zset foo -1} [$rd read] assert_equal {bar} [r zrange zset 0 -1] } test "BZPOPMIN with zero timeout should block indefinitely" { set rd [redis_deferring_client] r del zset $rd bzpopmin zset 0 after 1000 r zadd zset 0 foo assert_equal {zset foo 0} [$rd read] } } tags {"slow"} { stressers ziplist stressers skiplist } test {ZSET skiplist order consistency when elements are moved} { set original_max [lindex [r config get zset-max-ziplist-entries] 1] r config set zset-max-ziplist-entries 0 for {set times 0} {$times < 10} {incr times} { r del zset for {set j 0} {$j < 1000} {incr j} { r zadd zset [randomInt 50] ele-[randomInt 10] } # Make sure that element ordering is correct set prev_element {} set prev_score -1 foreach {element score} [r zrange zset 0 -1 WITHSCORES] { # Assert that elements are in increasing ordering assert { $prev_score < $score || ($prev_score == $score && [string compare $prev_element $element] == -1) } set prev_element $element set prev_score $score } } r config set zset-max-ziplist-entries $original_max } }