123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- #include "server.h"
- #include "bio.h"
- #include "atomicvar.h"
- #include "cluster.h"
- static size_t lazyfree_objects = 0;
- pthread_mutex_t lazyfree_objects_mutex = PTHREAD_MUTEX_INITIALIZER;
- /* Return the number of currently pending objects to free. */
- size_t lazyfreeGetPendingObjectsCount(void) {
- size_t aux;
- atomicGet(lazyfree_objects,aux);
- return aux;
- }
- /* Return the amount of work needed in order to free an object.
- * The return value is not always the actual number of allocations the
- * object is compoesd of, but a number proportional to it.
- *
- * For strings the function always returns 1.
- *
- * For aggregated objects represented by hash tables or other data structures
- * the function just returns the number of elements the object is composed of.
- *
- * Objects composed of single allocations are always reported as having a
- * single item even if they are actually logical composed of multiple
- * elements.
- *
- * For lists the function returns the number of elements in the quicklist
- * representing the list. */
- size_t lazyfreeGetFreeEffort(robj *obj) {
- if (obj->type == OBJ_LIST) {
- quicklist *ql = obj->ptr;
- return ql->len;
- } else if (obj->type == OBJ_SET && obj->encoding == OBJ_ENCODING_HT) {
- dict *ht = obj->ptr;
- return dictSize(ht);
- } else if (obj->type == OBJ_ZSET && obj->encoding == OBJ_ENCODING_SKIPLIST){
- zset *zs = obj->ptr;
- return zs->zsl->length;
- } else if (obj->type == OBJ_HASH && obj->encoding == OBJ_ENCODING_HT) {
- dict *ht = obj->ptr;
- return dictSize(ht);
- } else {
- return 1; /* Everything else is a single allocation. */
- }
- }
- /* Delete a key, value, and associated expiration entry if any, from the DB.
- * If there are enough allocations to free the value object may be put into
- * a lazy free list instead of being freed synchronously. The lazy free list
- * will be reclaimed in a different bio.c thread. */
- #define LAZYFREE_THRESHOLD 64
- int dbAsyncDelete(redisDb *db, robj *key) {
- /* Deleting an entry from the expires dict will not free the sds of
- * the key, because it is shared with the main dictionary. */
- if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr);
- /* If the value is composed of a few allocations, to free in a lazy way
- * is actually just slower... So under a certain limit we just free
- * the object synchronously. */
- dictEntry *de = dictUnlink(db->dict,key->ptr);
- if (de) {
- robj *val = dictGetVal(de);
- size_t free_effort = lazyfreeGetFreeEffort(val);
- /* If releasing the object is too much work, do it in the background
- * by adding the object to the lazy free list.
- * Note that if the object is shared, to reclaim it now it is not
- * possible. This rarely happens, however sometimes the implementation
- * of parts of the Redis core may call incrRefCount() to protect
- * objects, and then call dbDelete(). In this case we'll fall
- * through and reach the dictFreeUnlinkedEntry() call, that will be
- * equivalent to just calling decrRefCount(). */
- if (free_effort > LAZYFREE_THRESHOLD && val->refcount == 1) {
- atomicIncr(lazyfree_objects,1);
- bioCreateBackgroundJob(BIO_LAZY_FREE,val,NULL,NULL);
- dictSetVal(db->dict,de,NULL);
- }
- }
- /* Release the key-val pair, or just the key if we set the val
- * field to NULL in order to lazy free it later. */
- if (de) {
- dictFreeUnlinkedEntry(db->dict,de);
- if (server.cluster_enabled) slotToKeyDel(key);
- return 1;
- } else {
- return 0;
- }
- }
- /* Free an object, if the object is huge enough, free it in async way. */
- void freeObjAsync(robj *o) {
- size_t free_effort = lazyfreeGetFreeEffort(o);
- if (free_effort > LAZYFREE_THRESHOLD && o->refcount == 1) {
- atomicIncr(lazyfree_objects,1);
- bioCreateBackgroundJob(BIO_LAZY_FREE,o,NULL,NULL);
- } else {
- decrRefCount(o);
- }
- }
- /* Empty a Redis DB asynchronously. What the function does actually is to
- * create a new empty set of hash tables and scheduling the old ones for
- * lazy freeing. */
- void emptyDbAsync(redisDb *db) {
- dict *oldht1 = db->dict, *oldht2 = db->expires;
- db->dict = dictCreate(&dbDictType,NULL);
- db->expires = dictCreate(&keyptrDictType,NULL);
- atomicIncr(lazyfree_objects,dictSize(oldht1));
- bioCreateBackgroundJob(BIO_LAZY_FREE,NULL,oldht1,oldht2);
- }
- /* Empty the slots-keys map of Redis CLuster by creating a new empty one
- * and scheduiling the old for lazy freeing. */
- void slotToKeyFlushAsync(void) {
- rax *old = server.cluster->slots_to_keys;
- server.cluster->slots_to_keys = raxNew();
- memset(server.cluster->slots_keys_count,0,
- sizeof(server.cluster->slots_keys_count));
- atomicIncr(lazyfree_objects,old->numele);
- bioCreateBackgroundJob(BIO_LAZY_FREE,NULL,NULL,old);
- }
- /* Release objects from the lazyfree thread. It's just decrRefCount()
- * updating the count of objects to release. */
- void lazyfreeFreeObjectFromBioThread(robj *o) {
- decrRefCount(o);
- atomicDecr(lazyfree_objects,1);
- }
- /* Release a database from the lazyfree thread. The 'db' pointer is the
- * database which was substitutied with a fresh one in the main thread
- * when the database was logically deleted. 'sl' is a skiplist used by
- * Redis Cluster in order to take the hash slots -> keys mapping. This
- * may be NULL if Redis Cluster is disabled. */
- void lazyfreeFreeDatabaseFromBioThread(dict *ht1, dict *ht2) {
- size_t numkeys = dictSize(ht1);
- dictRelease(ht1);
- dictRelease(ht2);
- atomicDecr(lazyfree_objects,numkeys);
- }
- /* Release the skiplist mapping Redis Cluster keys to slots in the
- * lazyfree thread. */
- void lazyfreeFreeSlotsMapFromBioThread(rax *rt) {
- size_t len = rt->numele;
- raxFree(rt);
- atomicDecr(lazyfree_objects,len);
- }
|