package main import ( "context" "encoding/binary" "fmt" "net" "os" "time" ) // Use FFmpeg to push stream to this proxy: // ffmpeg -re -i ~/git/srs/trunk/doc/source.flv -c copy -pes_payload_size 0 -f mpegts 'srt://localhost:10081?streamid=#!::r=live/livestream?m=publish' // Play by SRT from this proxy: // ffplay 'srt://localhost:10081?streamid=#!::r=live/livestream,latency=20,m=request' var listenAddress = "127.0.0.1:10081" // Proxy to backend SRS Server. // Play by HTTP-FLV from SRS: // ffplay http://localhost:8080/live/livestream.flv // Play by SRT from SRS: // ffplay 'srt://localhost:10080?streamid=#!::r=live/livestream,latency=20,m=request' var backendAddress = "127.0.0.1:10080" func main() { fmt.Println("Hello, SRT!") if err := doMain(context.Background()); err != nil { fmt.Println(fmt.Sprintf("err %+v", err)) os.Exit(1) } } func doMain(ctx context.Context) error { serverAddr, err := net.ResolveUDPAddr("udp", listenAddress) if err != nil { return err } server, err := net.ListenUDP("udp", serverAddr) if err != nil { return err } defer server.Close() fmt.Println("UDP server listening on", server.LocalAddr().String()) start := time.Now() buf := make([]byte, 4096) connections := make(map[string]*SRTConnection) for { n, clientAddr, err := server.ReadFromUDP(buf) if err != nil { return err } connection, ok := connections[clientAddr.String()] if !ok { connection = &SRTConnection{ start: start, server: server, serverAddr: serverAddr, clientAddr: clientAddr, } connections[clientAddr.String()] = connection fmt.Println("New connection from", clientAddr.String()) } if err := connection.Consume(buf[:n]); err != nil { return err } fmt.Println(fmt.Sprintf("Received %v bytes from %s", n, clientAddr.String())) } return nil } type SRTConnection struct { // Listener start time. start time.Time // Local UDP server connection. server *net.UDPConn // Local UDP server listen address. serverAddr *net.UDPAddr // Client remote address. clientAddr *net.UDPAddr // Backend server connection. backend *net.UDPConn // Handshake packets with client. handshake0 *SRTHandshakePacket handshake1 *SRTHandshakePacket handshake2 *SRTHandshakePacket handshake3 *SRTHandshakePacket } func (v *SRTConnection) Close() error { if v.backend != nil { return v.backend.Close() } return nil } func (v *SRTConnection) Consume(b []byte) error { pkt := &SRTHandshakePacket{} if err := pkt.UnmarshalBinary(b); err != nil { return err } // Handle handshake messages. if pkt.IsHandshake() { if pkt.SynCookie == 0 { // Save handshake packet. v.handshake0 = pkt fmt.Println(fmt.Sprintf("Handshake 0: %v", v.handshake0.String())) // Response handshake 1. v.handshake1 = &SRTHandshakePacket{ ControlFlag: pkt.ControlFlag, ControlType: 0, SubType: 0, AdditionalInfo: 0, Timestamp: uint32(time.Since(v.start).Microseconds()), SocketID: pkt.SRTSocketID, Version: 5, EncryptionField: 0, ExtensionField: 0x4A17, InitSequence: pkt.InitSequence, MTU: pkt.MTU, FlowWindow: pkt.FlowWindow, HandshakeType: 1, SRTSocketID: pkt.SRTSocketID, SynCookie: 0x418d5e4e, PeerIP: v.serverAddr.IP, } fmt.Println(fmt.Sprintf("Handshake 1: %v", v.handshake1.String())) if b, err := v.handshake1.MarshalBinary(); err != nil { return err } else if _, err = v.server.WriteToUDP(b, v.clientAddr); err != nil { return err } return nil } else { // Save handshake packet. v.handshake2 = pkt fmt.Println(fmt.Sprintf("Handshake 2: %v", v.handshake2.String())) // Ignore if already connected. if v.backend == nil { remoteAddress, err := net.ResolveUDPAddr("udp", backendAddress) if err != nil { return err } if v.backend, err = net.DialUDP("udp", nil, remoteAddress); err != nil { return err } } // Proxy handshake 0 to backend server. if b, err := v.handshake0.MarshalBinary(); err != nil { return err } else if _, err = v.backend.Write(b); err != nil { return err } fmt.Println(fmt.Sprintf("Proxy send handshake 0: %v", v.handshake0.String())) // Read handshake 1 from backend server. b := make([]byte, 4096) handshake1p := &SRTHandshakePacket{} if nn, err := v.backend.Read(b); err != nil { return err } else if err := handshake1p.UnmarshalBinary(b[:nn]); err != nil { return err } fmt.Println(fmt.Sprintf("Proxy got handshake 1: %v", handshake1p.String())) // Proxy handshake 2 to backend server. handshake2p := *v.handshake2 handshake2p.SynCookie = handshake1p.SynCookie if b, err := handshake2p.MarshalBinary(); err != nil { return err } else if _, err = v.backend.Write(b); err != nil { return err } fmt.Println(fmt.Sprintf("Proxy send handshake 2: %v", handshake2p.String())) // Read handshake 3 from backend server. handshake3p := &SRTHandshakePacket{} if nn, err := v.backend.Read(b); err != nil { return err } else if err := handshake3p.UnmarshalBinary(b[:nn]); err != nil { return err } fmt.Println(fmt.Sprintf("Proxy got handshake 3: %v", handshake3p.String())) // Response handshake 3 to client. v.handshake3 = &*handshake3p v.handshake3.SynCookie = v.handshake1.SynCookie fmt.Println(fmt.Sprintf("Handshake 3: %v", v.handshake3.String())) if b, err := v.handshake3.MarshalBinary(); err != nil { return err } else if _, err = v.server.WriteToUDP(b, v.clientAddr); err != nil { return err } // Start a goroutine to proxy message from backend to client. go func() { for { nn, err := v.backend.Read(b) if err != nil { return } else if _, err = v.server.WriteToUDP(b[:nn], v.clientAddr); err != nil { return } fmt.Println(fmt.Sprintf("Proxy got %d bytes from backend server.", nn)) } }() return nil } } // Proxy all other messages to backend server. if _, err := v.backend.Write(b); err != nil { return err } fmt.Println(fmt.Sprintf("Packet: %v", pkt)) return nil } // See https://datatracker.ietf.org/doc/html/draft-sharabayko-srt-01#section-3.2 // See https://datatracker.ietf.org/doc/html/draft-sharabayko-srt-01#section-3.2.1 type SRTHandshakePacket struct { // F: 1 bit. Packet Type Flag. The control packet has this flag set to // "1". The data packet has this flag set to "0". ControlFlag uint8 // Control Type: 15 bits. Control Packet Type. The use of these bits // is determined by the control packet type definition. // Handshake control packets (Control Type = 0x0000) are used to // exchange peer configurations, to agree on connection parameters, and // to establish a connection. ControlType uint16 // Subtype: 16 bits. This field specifies an additional subtype for // specific packets. SubType uint16 // Type-specific Information: 32 bits. The use of this field depends on // the particular control packet type. Handshake packets do not use // this field. AdditionalInfo uint32 // Timestamp: 32 bits. Timestamp uint32 // Destination Socket ID: 32 bits. SocketID uint32 // Version: 32 bits. A base protocol version number. Currently used // values are 4 and 5. Values greater than 5 are reserved for future // use. Version uint32 // Encryption Field: 16 bits. Block cipher family and key size. The // values of this field are described in Table 2. The default value // is AES-128. // 0 | No Encryption Advertised // 2 | AES-128 // 3 | AES-192 // 4 | AES-256 EncryptionField uint16 // Extension Field: 16 bits. This field is message specific extension // related to Handshake Type field. The value MUST be set to 0 // except for the following cases. (1) If the handshake control // packet is the INDUCTION message, this field is sent back by the // Listener. (2) In the case of a CONCLUSION message, this field // value should contain a combination of Extension Type values. // 0x00000001 | HSREQ // 0x00000002 | KMREQ // 0x00000004 | CONFIG // 0x4A17 if HandshakeType is INDUCTION, see https://datatracker.ietf.org/doc/html/draft-sharabayko-srt-01#section-4.3.1.1 ExtensionField uint16 // Initial Packet Sequence Number: 32 bits. The sequence number of the // very first data packet to be sent. InitSequence uint32 // Maximum Transmission Unit Size: 32 bits. This value is typically set // to 1500, which is the default Maximum Transmission Unit (MTU) size // for Ethernet, but can be less. MTU uint32 // Maximum Flow Window Size: 32 bits. The value of this field is the // maximum number of data packets allowed to be "in flight" (i.e. the // number of sent packets for which an ACK control packet has not yet // been received). FlowWindow uint32 // Handshake Type: 32 bits. This field indicates the handshake packet // type. // 0xFFFFFFFD | DONE // 0xFFFFFFFE | AGREEMENT // 0xFFFFFFFF | CONCLUSION // 0x00000000 | WAVEHAND // 0x00000001 | INDUCTION HandshakeType uint32 // SRT Socket ID: 32 bits. This field holds the ID of the source SRT // socket from which a handshake packet is issued. SRTSocketID uint32 // SYN Cookie: 32 bits. Randomized value for processing a handshake. // The value of this field is specified by the handshake message // type. SynCookie uint32 // Peer IP Address: 128 bits. IPv4 or IPv6 address of the packet's // sender. The value consists of four 32-bit fields. PeerIP net.IP // Extensions. // Extension Type: 16 bits. The value of this field is used to process // an integrated handshake. Each extension can have a pair of // request and response types. // Extension Length: 16 bits. The length of the Extension Contents // field in four-byte blocks. // Extension Contents: variable length. The payload of the extension. ExtraData []byte } func (v *SRTHandshakePacket) IsControl() bool { return v.ControlFlag == 0x80 } func (v *SRTHandshakePacket) IsHandshake() bool { return v.IsControl() && v.ControlType == 0x00 && v.SubType == 0x00 } func (v *SRTHandshakePacket) String() string { return fmt.Sprintf("Control=%v, CType=%v, SType=%v, Timestamp=%v, SocketID=%v, Version=%v, Encrypt=%v, Extension=%v, InitSequence=%v, MTU=%v, FlowWnd=%v, HSType=%v, SRTSocketID=%v, Cookie=%v, Peer=%vB, Extra=%vB", v.IsControl(), v.ControlType, v.SubType, v.Timestamp, v.SocketID, v.Version, v.EncryptionField, v.ExtensionField, v.InitSequence, v.MTU, v.FlowWindow, v.HandshakeType, v.SRTSocketID, v.SynCookie, len(v.PeerIP), len(v.ExtraData)) } func (v *SRTHandshakePacket) UnmarshalBinary(b []byte) error { if len(b) < 4 { return fmt.Errorf("Invalid packet length %v", len(b)) } v.ControlFlag = b[0] & 0x80 v.ControlType = binary.BigEndian.Uint16(b[0:2]) & 0x7fff v.SubType = binary.BigEndian.Uint16(b[2:4]) if !v.IsHandshake() { return nil } if len(b) < 64 { return fmt.Errorf("Invalid packet length %v", len(b)) } v.AdditionalInfo = binary.BigEndian.Uint32(b[4:]) v.Timestamp = binary.BigEndian.Uint32(b[8:]) v.SocketID = binary.BigEndian.Uint32(b[12:]) v.Version = binary.BigEndian.Uint32(b[16:]) v.EncryptionField = binary.BigEndian.Uint16(b[20:]) v.ExtensionField = binary.BigEndian.Uint16(b[22:]) v.InitSequence = binary.BigEndian.Uint32(b[24:]) v.MTU = binary.BigEndian.Uint32(b[28:]) v.FlowWindow = binary.BigEndian.Uint32(b[32:]) v.HandshakeType = binary.BigEndian.Uint32(b[36:]) v.SRTSocketID = binary.BigEndian.Uint32(b[40:]) v.SynCookie = binary.BigEndian.Uint32(b[44:]) // Only support IPv4. v.PeerIP = net.IPv4(b[51], b[50], b[49], b[48]) v.ExtraData = b[64:] return nil } func (v *SRTHandshakePacket) MarshalBinary() ([]byte, error) { b := make([]byte, 64+len(v.ExtraData)) binary.BigEndian.PutUint16(b, uint16(v.ControlFlag)<<8|v.ControlType) binary.BigEndian.PutUint16(b[2:], v.SubType) binary.BigEndian.PutUint32(b[4:], v.AdditionalInfo) binary.BigEndian.PutUint32(b[8:], v.Timestamp) binary.BigEndian.PutUint32(b[12:], v.SocketID) binary.BigEndian.PutUint32(b[16:], v.Version) binary.BigEndian.PutUint16(b[20:], v.EncryptionField) binary.BigEndian.PutUint16(b[22:], v.ExtensionField) binary.BigEndian.PutUint32(b[24:], v.InitSequence) binary.BigEndian.PutUint32(b[28:], v.MTU) binary.BigEndian.PutUint32(b[32:], v.FlowWindow) binary.BigEndian.PutUint32(b[36:], v.HandshakeType) binary.BigEndian.PutUint32(b[40:], v.SRTSocketID) binary.BigEndian.PutUint32(b[44:], v.SynCookie) // Only support IPv4. ip := v.PeerIP.To4() b[48] = ip[3] b[49] = ip[2] b[50] = ip[1] b[51] = ip[0] if len(v.ExtraData) > 0 { copy(b[64:], v.ExtraData) } return b, nil }