2
0

aacenc_is.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158
  1. /*
  2. * AAC encoder intensity stereo
  3. * Copyright (C) 2015 Rostislav Pehlivanov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC encoder Intensity Stereo
  24. * @author Rostislav Pehlivanov ( atomnuker gmail com )
  25. */
  26. #include "aacenc.h"
  27. #include "aacenc_utils.h"
  28. #include "aacenc_is.h"
  29. #include "aacenc_quantization.h"
  30. struct AACISError ff_aac_is_encoding_err(AACEncContext *s, ChannelElement *cpe,
  31. int start, int w, int g, float ener0,
  32. float ener1, float ener01,
  33. int use_pcoeffs, int phase)
  34. {
  35. int i, w2;
  36. SingleChannelElement *sce0 = &cpe->ch[0];
  37. SingleChannelElement *sce1 = &cpe->ch[1];
  38. float *L = use_pcoeffs ? sce0->pcoeffs : sce0->coeffs;
  39. float *R = use_pcoeffs ? sce1->pcoeffs : sce1->coeffs;
  40. float *L34 = &s->scoefs[256*0], *R34 = &s->scoefs[256*1];
  41. float *IS = &s->scoefs[256*2], *I34 = &s->scoefs[256*3];
  42. float dist1 = 0.0f, dist2 = 0.0f;
  43. struct AACISError is_error = {0};
  44. if (ener01 <= 0 || ener0 <= 0) {
  45. is_error.pass = 0;
  46. return is_error;
  47. }
  48. for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
  49. FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
  50. FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
  51. int is_band_type, is_sf_idx = FFMAX(1, sce0->sf_idx[w*16+g]-4);
  52. float e01_34 = phase*pos_pow34(ener1/ener0);
  53. float maxval, dist_spec_err = 0.0f;
  54. float minthr = FFMIN(band0->threshold, band1->threshold);
  55. for (i = 0; i < sce0->ics.swb_sizes[g]; i++)
  56. IS[i] = (L[start+(w+w2)*128+i] + phase*R[start+(w+w2)*128+i])*sqrt(ener0/ener01);
  57. s->abs_pow34(L34, &L[start+(w+w2)*128], sce0->ics.swb_sizes[g]);
  58. s->abs_pow34(R34, &R[start+(w+w2)*128], sce0->ics.swb_sizes[g]);
  59. s->abs_pow34(I34, IS, sce0->ics.swb_sizes[g]);
  60. maxval = find_max_val(1, sce0->ics.swb_sizes[g], I34);
  61. is_band_type = find_min_book(maxval, is_sf_idx);
  62. dist1 += quantize_band_cost(s, &L[start + (w+w2)*128], L34,
  63. sce0->ics.swb_sizes[g],
  64. sce0->sf_idx[w*16+g],
  65. sce0->band_type[w*16+g],
  66. s->lambda / band0->threshold, INFINITY, NULL, NULL, 0);
  67. dist1 += quantize_band_cost(s, &R[start + (w+w2)*128], R34,
  68. sce1->ics.swb_sizes[g],
  69. sce1->sf_idx[w*16+g],
  70. sce1->band_type[w*16+g],
  71. s->lambda / band1->threshold, INFINITY, NULL, NULL, 0);
  72. dist2 += quantize_band_cost(s, IS, I34, sce0->ics.swb_sizes[g],
  73. is_sf_idx, is_band_type,
  74. s->lambda / minthr, INFINITY, NULL, NULL, 0);
  75. for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
  76. dist_spec_err += (L34[i] - I34[i])*(L34[i] - I34[i]);
  77. dist_spec_err += (R34[i] - I34[i]*e01_34)*(R34[i] - I34[i]*e01_34);
  78. }
  79. dist_spec_err *= s->lambda / minthr;
  80. dist2 += dist_spec_err;
  81. }
  82. is_error.pass = dist2 <= dist1;
  83. is_error.phase = phase;
  84. is_error.error = dist2 - dist1;
  85. is_error.dist1 = dist1;
  86. is_error.dist2 = dist2;
  87. is_error.ener01 = ener01;
  88. return is_error;
  89. }
  90. void ff_aac_search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElement *cpe)
  91. {
  92. SingleChannelElement *sce0 = &cpe->ch[0];
  93. SingleChannelElement *sce1 = &cpe->ch[1];
  94. int start = 0, count = 0, w, w2, g, i, prev_sf1 = -1, prev_bt = -1, prev_is = 0;
  95. const float freq_mult = avctx->sample_rate/(1024.0f/sce0->ics.num_windows)/2.0f;
  96. uint8_t nextband1[128];
  97. if (!cpe->common_window)
  98. return;
  99. /** Scout out next nonzero bands */
  100. ff_init_nextband_map(sce1, nextband1);
  101. for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
  102. start = 0;
  103. for (g = 0; g < sce0->ics.num_swb; g++) {
  104. if (start*freq_mult > INT_STEREO_LOW_LIMIT*(s->lambda/170.0f) &&
  105. cpe->ch[0].band_type[w*16+g] != NOISE_BT && !cpe->ch[0].zeroes[w*16+g] &&
  106. cpe->ch[1].band_type[w*16+g] != NOISE_BT && !cpe->ch[1].zeroes[w*16+g] &&
  107. ff_sfdelta_can_remove_band(sce1, nextband1, prev_sf1, w*16+g)) {
  108. float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f, ener01p = 0.0f;
  109. struct AACISError ph_err1, ph_err2, *best;
  110. for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
  111. for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
  112. float coef0 = sce0->coeffs[start+(w+w2)*128+i];
  113. float coef1 = sce1->coeffs[start+(w+w2)*128+i];
  114. ener0 += coef0*coef0;
  115. ener1 += coef1*coef1;
  116. ener01 += (coef0 + coef1)*(coef0 + coef1);
  117. ener01p += (coef0 - coef1)*(coef0 - coef1);
  118. }
  119. }
  120. ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g,
  121. ener0, ener1, ener01p, 0, -1);
  122. ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g,
  123. ener0, ener1, ener01, 0, +1);
  124. best = (ph_err1.pass && ph_err1.error < ph_err2.error) ? &ph_err1 : &ph_err2;
  125. if (best->pass) {
  126. cpe->is_mask[w*16+g] = 1;
  127. cpe->ms_mask[w*16+g] = 0;
  128. cpe->ch[0].is_ener[w*16+g] = sqrt(ener0 / best->ener01);
  129. cpe->ch[1].is_ener[w*16+g] = ener0/ener1;
  130. cpe->ch[1].band_type[w*16+g] = (best->phase > 0) ? INTENSITY_BT : INTENSITY_BT2;
  131. if (prev_is && prev_bt != cpe->ch[1].band_type[w*16+g]) {
  132. /** Flip M/S mask and pick the other CB, since it encodes more efficiently */
  133. cpe->ms_mask[w*16+g] = 1;
  134. cpe->ch[1].band_type[w*16+g] = (best->phase > 0) ? INTENSITY_BT2 : INTENSITY_BT;
  135. }
  136. prev_bt = cpe->ch[1].band_type[w*16+g];
  137. count++;
  138. }
  139. }
  140. if (!sce1->zeroes[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
  141. prev_sf1 = sce1->sf_idx[w*16+g];
  142. prev_is = cpe->is_mask[w*16+g];
  143. start += sce0->ics.swb_sizes[g];
  144. }
  145. }
  146. cpe->is_mode = !!count;
  147. }