123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- /*
- * (I)RDFT transforms
- * Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com>
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- #include <stdlib.h>
- #include <math.h>
- #include "libavutil/mathematics.h"
- #include "rdft.h"
- /**
- * @file
- * (Inverse) Real Discrete Fourier Transforms.
- */
- /** Map one real FFT into two parallel real even and odd FFTs. Then interleave
- * the two real FFTs into one complex FFT. Unmangle the results.
- * ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
- */
- static void rdft_calc_c(RDFTContext *s, FFTSample *data)
- {
- int i, i1, i2;
- FFTComplex ev, od, odsum;
- const int n = 1 << s->nbits;
- const float k1 = 0.5;
- const float k2 = 0.5 - s->inverse;
- const FFTSample *tcos = s->tcos;
- const FFTSample *tsin = s->tsin;
- if (!s->inverse) {
- s->fft.fft_permute(&s->fft, (FFTComplex*)data);
- s->fft.fft_calc(&s->fft, (FFTComplex*)data);
- }
- /* i=0 is a special case because of packing, the DC term is real, so we
- are going to throw the N/2 term (also real) in with it. */
- ev.re = data[0];
- data[0] = ev.re+data[1];
- data[1] = ev.re-data[1];
- #define RDFT_UNMANGLE(sign0, sign1) \
- for (i = 1; i < (n>>2); i++) { \
- i1 = 2*i; \
- i2 = n-i1; \
- /* Separate even and odd FFTs */ \
- ev.re = k1*(data[i1 ]+data[i2 ]); \
- od.im = k2*(data[i2 ]-data[i1 ]); \
- ev.im = k1*(data[i1+1]-data[i2+1]); \
- od.re = k2*(data[i1+1]+data[i2+1]); \
- /* Apply twiddle factors to the odd FFT and add to the even FFT */ \
- odsum.re = od.re*tcos[i] sign0 od.im*tsin[i]; \
- odsum.im = od.im*tcos[i] sign1 od.re*tsin[i]; \
- data[i1 ] = ev.re + odsum.re; \
- data[i1+1] = ev.im + odsum.im; \
- data[i2 ] = ev.re - odsum.re; \
- data[i2+1] = odsum.im - ev.im; \
- }
- if (s->negative_sin) {
- RDFT_UNMANGLE(+,-)
- } else {
- RDFT_UNMANGLE(-,+)
- }
- data[2*i+1]=s->sign_convention*data[2*i+1];
- if (s->inverse) {
- data[0] *= k1;
- data[1] *= k1;
- s->fft.fft_permute(&s->fft, (FFTComplex*)data);
- s->fft.fft_calc(&s->fft, (FFTComplex*)data);
- }
- }
- av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
- {
- int n = 1 << nbits;
- int ret;
- s->nbits = nbits;
- s->inverse = trans == IDFT_C2R || trans == DFT_C2R;
- s->sign_convention = trans == IDFT_R2C || trans == DFT_C2R ? 1 : -1;
- s->negative_sin = trans == DFT_C2R || trans == DFT_R2C;
- if (nbits < 4 || nbits > 16)
- return AVERROR(EINVAL);
- if ((ret = ff_fft_init(&s->fft, nbits-1, trans == IDFT_C2R || trans == IDFT_R2C)) < 0)
- return ret;
- ff_init_ff_cos_tabs(nbits);
- s->tcos = ff_cos_tabs[nbits];
- s->tsin = ff_cos_tabs[nbits] + (n >> 2);
- s->rdft_calc = rdft_calc_c;
- if (ARCH_ARM) ff_rdft_init_arm(s);
- return 0;
- }
- av_cold void ff_rdft_end(RDFTContext *s)
- {
- ff_fft_end(&s->fft);
- }
|