123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385 |
- ;******************************************************************************
- ;* SIMD optimized Opus encoder DSP function
- ;*
- ;* Copyright (C) 2017 Ivan Kalvachev <ikalvachev@gmail.com>
- ;*
- ;* This file is part of FFmpeg.
- ;*
- ;* FFmpeg is free software; you can redistribute it and/or
- ;* modify it under the terms of the GNU Lesser General Public
- ;* License as published by the Free Software Foundation; either
- ;* version 2.1 of the License, or (at your option) any later version.
- ;*
- ;* FFmpeg is distributed in the hope that it will be useful,
- ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
- ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- ;* Lesser General Public License for more details.
- ;*
- ;* You should have received a copy of the GNU Lesser General Public
- ;* License along with FFmpeg; if not, write to the Free Software
- ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- ;******************************************************************************
- %include "config.asm"
- %include "libavutil/x86/x86util.asm"
- %ifdef __NASM_VER__
- %use "smartalign"
- ALIGNMODE p6
- %endif
- SECTION_RODATA 64
- const_float_abs_mask: times 8 dd 0x7fffffff
- const_align_abs_edge: times 8 dd 0
- const_float_0_5: times 8 dd 0.5
- const_float_1: times 8 dd 1.0
- const_float_sign_mask: times 8 dd 0x80000000
- const_int32_offsets:
- %rep 8
- dd $-const_int32_offsets
- %endrep
- SECTION .text
- ;
- ; Setup High Register to be used
- ; for holding memory constants
- ;
- ; %1 - the register to be used, assmues it is >= mm8
- ; %2 - name of the constant.
- ;
- ; Subsequent opcodes are going to use the constant in the form
- ; "addps m0, mm_const_name" and it would be turned into:
- ; "addps m0, [const_name]" on 32 bit arch or
- ; "addps m0, m8" on 64 bit arch
- %macro SET_HI_REG_MM_CONSTANT 3 ; movop, reg, const_name
- %if num_mmregs > 8
- %define mm_%3 %2
- %{1} %2, [%3] ; movaps m8, [const_name]
- %else
- %define mm_%3 [%3]
- %endif
- %endmacro
- ;
- ; Set Position Independent Code
- ; Base address of a constant
- ; %1 - the register to be used, if PIC is set
- ; %2 - name of the constant.
- ;
- ; Subsequent opcode are going to use the base address in the form
- ; "movaps m0, [pic_base_constant_name+r4]" and it would be turned into
- ; "movaps m0, [r5 + r4]" if PIC is enabled
- ; "movaps m0, [constant_name + r4]" if texrel are used
- %macro SET_PIC_BASE 3; reg, const_label
- %ifdef PIC
- %{1} %2, [%3] ; lea r5, [rip+const]
- %define pic_base_%3 %2
- %else
- %define pic_base_%3 %3
- %endif
- %endmacro
- %macro PULSES_SEARCH 1
- ; m6 Syy_norm
- ; m7 Sxy_norm
- addps m6, mm_const_float_0_5 ; Syy_norm += 1.0/2
- pxor m1, m1 ; max_idx
- xorps m3, m3 ; p_max
- xor r4d, r4d
- align 16
- %%distortion_search:
- movd xm2, dword r4d ; movd zero extends
- %ifidn %1,add
- movaps m4, [tmpY + r4] ; y[i]
- movaps m5, [tmpX + r4] ; X[i]
- %if USE_APPROXIMATION == 1
- xorps m0, m0
- cmpps m0, m0, m5, 4 ; m0 = (X[i] != 0.0)
- %endif
- addps m4, m6 ; m4 = Syy_new = y[i] + Syy_norm
- addps m5, m7 ; m5 = Sxy_new = X[i] + Sxy_norm
- %if USE_APPROXIMATION == 1
- andps m5, m0 ; if(X[i] == 0) Sxy_new = 0; Prevent aproximation error from setting pulses in array padding.
- %endif
- %else
- movaps m5, [tmpY + r4] ; m5 = y[i]
- xorps m0, m0 ; m0 = 0;
- cmpps m0, m0, m5, 1 ; m0 = (0<y)
- subps m4, m6, m5 ; m4 = Syy_new = Syy_norm - y[i]
- subps m5, m7, [tmpX + r4] ; m5 = Sxy_new = Sxy_norm - X[i]
- andps m5, m0 ; (0<y)?m5:0
- %endif
- %if USE_APPROXIMATION == 1
- rsqrtps m4, m4
- mulps m5, m4 ; m5 = p = Sxy_new*approx(1/sqrt(Syy) )
- %else
- mulps m5, m5
- divps m5, m4 ; m5 = p = Sxy_new*Sxy_new/Syy
- %endif
- VPBROADCASTD m2, xm2 ; m2=i (all lanes get same values, we add the offset-per-lane, later)
- cmpps m0, m3, m5, 1 ; m0 = (m3 < m5) ; (p_max < p) ; (p > p_max)
- maxps m3, m5 ; m3=max(p_max,p)
- ; maxps here is faster than blendvps, despite blend having lower latency.
- pand m2, m0 ; This version seems faster than sse41 pblendvb
- pmaxsw m1, m2 ; SSE2 signed word, so it would work for N < 32768/4
- add r4d, mmsize
- cmp r4d, Nd
- jb %%distortion_search
- por m1, mm_const_int32_offsets ; max_idx offsets per individual lane (skipped in the inner loop)
- movdqa m4, m1 ; needed for the aligned y[max_idx]+=1; processing
- %if mmsize >= 32
- ; Merge parallel maximums round 8 (4 vs 4)
- vextractf128 xm5, ym3, 1 ; xmm5 = ymm3[1x128] = ymm3[255..128b]
- cmpps xm0, xm3, xm5, 1 ; m0 = (m3 < m5) = ( p[0x128] < p[1x128] )
- vextracti128 xm2, ym1, 1 ; xmm2 = ymm1[1x128] = ymm1[255..128b]
- BLENDVPS xm3, xm5, xm0 ; max_idx = m0 ? max_idx[1x128] : max_idx[0x128]
- PBLENDVB xm1, xm2, xm0 ; p = m0 ? p[1x128] : p[0x128]
- %endif
- ; Merge parallel maximums round 4 (2 vs 2)
- ; m3=p[3210]
- movhlps xm5, xm3 ; m5=p[xx32]
- cmpps xm0, xm3, xm5, 1 ; m0 = (m3 < m5) = ( p[1,0] < p[3,2] )
- pshufd xm2, xm1, q3232
- BLENDVPS xm3, xm5, xm0 ; max_idx = m0 ? max_idx[3,2] : max_idx[1,0]
- PBLENDVB xm1, xm2, xm0 ; p = m0 ? p[3,2] : p[1,0]
- ; Merge parallel maximums final round (1 vs 1)
- shufps xm0, xm3, xm3, q1111 ; m0 = m3[1] = p[1]
- cmpss xm0, xm3, 5 ; m0 = !(m0 >= m3) = !( p[1] >= p[0] )
- pshufd xm2, xm1, q1111
- PBLENDVB xm1, xm2, xm0
- movd dword r4d, xm1 ; zero extends to the rest of r4q
- VBROADCASTSS m3, [tmpX + r4]
- %{1}ps m7, m3 ; Sxy += X[max_idx]
- VBROADCASTSS m5, [tmpY + r4]
- %{1}ps m6, m5 ; Syy += Y[max_idx]
- ; We have to update a single element in Y[i]
- ; However writing 4 bytes and then doing 16 byte load in the inner loop
- ; could cause a stall due to breaking write forwarding.
- VPBROADCASTD m1, xm1
- pcmpeqd m1, m1, m4 ; exactly 1 element matches max_idx and this finds it
- and r4d, ~(mmsize-1) ; align address down, so the value pointed by max_idx is inside a mmsize load
- movaps m5, [tmpY + r4] ; m5 = Y[y3...ym...y0]
- andps m1, mm_const_float_1 ; m1 = [ 0...1.0...0]
- %{1}ps m5, m1 ; m5 = Y[y3...ym...y0] +/- [0...1.0...0]
- movaps [tmpY + r4], m5 ; Y[max_idx] +-= 1.0;
- %endmacro
- ;
- ; We need one more register for
- ; PIC relative addressing. Use this
- ; to count it in cglobal
- ;
- %ifdef PIC
- %define num_pic_regs 1
- %else
- %define num_pic_regs 0
- %endif
- ;
- ; Pyramid Vector Quantization Search implementation
- ;
- ; float * inX - Unaligned (SIMD) access, it will be overread,
- ; but extra data is masked away.
- ; int32 * outY - Should be aligned and padded buffer.
- ; It is used as temp buffer.
- ; uint32 K - Number of pulses to have after quantizations.
- ; uint32 N - Number of vector elements. Must be 0 < N < 256
- ;
- %macro PVQ_FAST_SEARCH 1
- cglobal pvq_search%1, 4, 5+num_pic_regs, 11, 256*4, inX, outY, K, N
- %define tmpX rsp
- %define tmpY outYq
- movaps m0, [const_float_abs_mask]
- shl Nd, 2 ; N *= sizeof(float); also 32 bit operation zeroes the high 32 bits in 64 bit mode.
- mov r4d, Nd
- neg r4d
- and r4d, mmsize-1
- SET_PIC_BASE lea, r5, const_align_abs_edge ; rip+const
- movups m2, [pic_base_const_align_abs_edge + r4 - mmsize]
- add Nd, r4d ; N = align(N, mmsize)
- lea r4d, [Nd - mmsize] ; N is rounded up (aligned up) to mmsize, so r4 can't become negative here, unless N=0.
- movups m1, [inXq + r4]
- andps m1, m2
- movaps [tmpX + r4], m1 ; Sx = abs( X[N-1] )
- align 16
- %%loop_abs_sum:
- sub r4d, mmsize
- jc %%end_loop_abs_sum
- movups m2, [inXq + r4]
- andps m2, m0
- movaps [tmpX + r4], m2 ; tmpX[i]=abs(X[i])
- addps m1, m2 ; Sx += abs(X[i])
- jmp %%loop_abs_sum
- align 16
- %%end_loop_abs_sum:
- HSUMPS m1, m2 ; m1 = Sx
- xorps m0, m0
- comiss xm0, xm1 ;
- jz %%zero_input ; if (Sx==0) goto zero_input
- cvtsi2ss xm0, dword Kd ; m0 = K
- %if USE_APPROXIMATION == 1
- rcpss xm1, xm1 ; m1 = approx(1/Sx)
- mulss xm0, xm1 ; m0 = K*(1/Sx)
- %else
- divss xm0, xm1 ; b = K/Sx
- ; b = K/max_x
- %endif
- VBROADCASTSS m0, xm0
- lea r4d, [Nd - mmsize]
- pxor m5, m5 ; Sy ( Sum of abs( y[i]) )
- xorps m6, m6 ; Syy ( Sum of y[i]*y[i] )
- xorps m7, m7 ; Sxy ( Sum of X[i]*y[i] )
- align 16
- %%loop_guess:
- movaps m1, [tmpX + r4] ; m1 = X[i]
- mulps m2, m0, m1 ; m2 = res*X[i]
- cvtps2dq m2, m2 ; yt = (int)lrintf( res*X[i] )
- paddd m5, m2 ; Sy += yt
- cvtdq2ps m2, m2 ; yt = (float)yt
- mulps m1, m2 ; m1 = X[i]*yt
- movaps [tmpY + r4], m2 ; y[i] = m2
- addps m7, m1 ; Sxy += m1;
- mulps m2, m2 ; m2 = yt*yt
- addps m6, m2 ; Syy += m2
- sub r4d, mmsize
- jnc %%loop_guess
- HSUMPS m6, m1 ; Syy_norm
- HADDD m5, m4 ; pulses
- movd dword r4d, xm5 ; zero extends to the rest of r4q
- sub Kd, r4d ; K -= pulses , also 32 bit operation zeroes high 32 bit in 64 bit mode.
- jz %%finish ; K - pulses == 0
- SET_HI_REG_MM_CONSTANT movaps, m8, const_float_0_5
- SET_HI_REG_MM_CONSTANT movaps, m9, const_float_1
- SET_HI_REG_MM_CONSTANT movdqa, m10, const_int32_offsets
- ; Use Syy/2 in distortion parameter calculations.
- ; Saves pre and post-caclulation to correct Y[] values.
- ; Same precision, since float mantisa is normalized.
- ; The SQRT approximation does differ.
- HSUMPS m7, m0 ; Sxy_norm
- mulps m6, mm_const_float_0_5
- jc %%remove_pulses_loop ; K - pulses < 0
- align 16 ; K - pulses > 0
- %%add_pulses_loop:
- PULSES_SEARCH add ; m6 Syy_norm ; m7 Sxy_norm
- sub Kd, 1
- jnz %%add_pulses_loop
- addps m6, m6 ; Syy*=2
- jmp %%finish
- align 16
- %%remove_pulses_loop:
- PULSES_SEARCH sub ; m6 Syy_norm ; m7 Sxy_norm
- add Kd, 1
- jnz %%remove_pulses_loop
- addps m6, m6 ; Syy*=2
- align 16
- %%finish:
- lea r4d, [Nd - mmsize]
- movaps m2, [const_float_sign_mask]
- align 16
- %%restore_sign_loop:
- movaps m0, [tmpY + r4] ; m0 = Y[i]
- movups m1, [inXq + r4] ; m1 = X[i]
- andps m1, m2 ; m1 = sign(X[i])
- orps m0, m1 ; m0 = Y[i]*sign
- cvtps2dq m3, m0 ; m3 = (int)m0
- movaps [outYq + r4], m3
- sub r4d, mmsize
- jnc %%restore_sign_loop
- %%return:
- %if ARCH_X86_64 == 0 ; sbrdsp
- movss r0m, xm6 ; return (float)Syy_norm
- fld dword r0m
- %else
- movaps m0, m6 ; return (float)Syy_norm
- %endif
- RET
- align 16
- %%zero_input:
- lea r4d, [Nd - mmsize]
- xorps m0, m0
- %%zero_loop:
- movaps [outYq + r4], m0
- sub r4d, mmsize
- jnc %%zero_loop
- movaps m6, [const_float_1]
- jmp %%return
- %endmacro
- ; if 1, use a float op that give half precision but execute for around 3 cycles.
- ; On Skylake & Ryzen the division is much faster (around 11c/3),
- ; that makes the full precision code about 2% slower.
- ; Opus also does use rsqrt approximation in their intrinsics code.
- %define USE_APPROXIMATION 1
- INIT_XMM sse2
- PVQ_FAST_SEARCH _approx
- INIT_XMM sse4
- PVQ_FAST_SEARCH _approx
- %define USE_APPROXIMATION 0
- INIT_XMM avx
- PVQ_FAST_SEARCH _exact
|