2
0

aes.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268
  1. /*
  2. * copyright (c) 2007 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * some optimization ideas from aes128.c by Reimar Doeffinger
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "common.h"
  23. #include "aes.h"
  24. #include "aes_internal.h"
  25. #include "intreadwrite.h"
  26. #include "timer.h"
  27. const int av_aes_size= sizeof(AVAES);
  28. struct AVAES *av_aes_alloc(void)
  29. {
  30. return av_mallocz(sizeof(struct AVAES));
  31. }
  32. static const uint8_t rcon[10] = {
  33. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
  34. };
  35. static uint8_t sbox[256];
  36. static uint8_t inv_sbox[256];
  37. #if CONFIG_SMALL
  38. static uint32_t enc_multbl[1][256];
  39. static uint32_t dec_multbl[1][256];
  40. #else
  41. static uint32_t enc_multbl[4][256];
  42. static uint32_t dec_multbl[4][256];
  43. #endif
  44. #if HAVE_BIGENDIAN
  45. # define ROT(x, s) (((x) >> (s)) | ((x) << (32-(s))))
  46. #else
  47. # define ROT(x, s) (((x) << (s)) | ((x) >> (32-(s))))
  48. #endif
  49. static inline void addkey(av_aes_block *dst, const av_aes_block *src,
  50. const av_aes_block *round_key)
  51. {
  52. dst->u64[0] = src->u64[0] ^ round_key->u64[0];
  53. dst->u64[1] = src->u64[1] ^ round_key->u64[1];
  54. }
  55. static inline void addkey_s(av_aes_block *dst, const uint8_t *src,
  56. const av_aes_block *round_key)
  57. {
  58. dst->u64[0] = AV_RN64(src) ^ round_key->u64[0];
  59. dst->u64[1] = AV_RN64(src + 8) ^ round_key->u64[1];
  60. }
  61. static inline void addkey_d(uint8_t *dst, const av_aes_block *src,
  62. const av_aes_block *round_key)
  63. {
  64. AV_WN64(dst, src->u64[0] ^ round_key->u64[0]);
  65. AV_WN64(dst + 8, src->u64[1] ^ round_key->u64[1]);
  66. }
  67. static void subshift(av_aes_block s0[2], int s, const uint8_t *box)
  68. {
  69. av_aes_block *s1 = (av_aes_block *) (s0[0].u8 - s);
  70. av_aes_block *s3 = (av_aes_block *) (s0[0].u8 + s);
  71. s0[0].u8[ 0] = box[s0[1].u8[ 0]];
  72. s0[0].u8[ 4] = box[s0[1].u8[ 4]];
  73. s0[0].u8[ 8] = box[s0[1].u8[ 8]];
  74. s0[0].u8[12] = box[s0[1].u8[12]];
  75. s1[0].u8[ 3] = box[s1[1].u8[ 7]];
  76. s1[0].u8[ 7] = box[s1[1].u8[11]];
  77. s1[0].u8[11] = box[s1[1].u8[15]];
  78. s1[0].u8[15] = box[s1[1].u8[ 3]];
  79. s0[0].u8[ 2] = box[s0[1].u8[10]];
  80. s0[0].u8[10] = box[s0[1].u8[ 2]];
  81. s0[0].u8[ 6] = box[s0[1].u8[14]];
  82. s0[0].u8[14] = box[s0[1].u8[ 6]];
  83. s3[0].u8[ 1] = box[s3[1].u8[13]];
  84. s3[0].u8[13] = box[s3[1].u8[ 9]];
  85. s3[0].u8[ 9] = box[s3[1].u8[ 5]];
  86. s3[0].u8[ 5] = box[s3[1].u8[ 1]];
  87. }
  88. static inline int mix_core(uint32_t multbl[][256], int a, int b, int c, int d)
  89. {
  90. #if CONFIG_SMALL
  91. return multbl[0][a] ^ ROT(multbl[0][b], 8) ^ ROT(multbl[0][c], 16) ^ ROT(multbl[0][d], 24);
  92. #else
  93. return multbl[0][a] ^ multbl[1][b] ^ multbl[2][c] ^ multbl[3][d];
  94. #endif
  95. }
  96. static inline void mix(av_aes_block state[2], uint32_t multbl[][256], int s1, int s3)
  97. {
  98. uint8_t (*src)[4] = state[1].u8x4;
  99. state[0].u32[0] = mix_core(multbl, src[0][0], src[s1 ][1], src[2][2], src[s3 ][3]);
  100. state[0].u32[1] = mix_core(multbl, src[1][0], src[s3 - 1][1], src[3][2], src[s1 - 1][3]);
  101. state[0].u32[2] = mix_core(multbl, src[2][0], src[s3 ][1], src[0][2], src[s1 ][3]);
  102. state[0].u32[3] = mix_core(multbl, src[3][0], src[s1 - 1][1], src[1][2], src[s3 - 1][3]);
  103. }
  104. static inline void aes_crypt(AVAES *a, int s, const uint8_t *sbox,
  105. uint32_t multbl[][256])
  106. {
  107. int r;
  108. for (r = a->rounds - 1; r > 0; r--) {
  109. mix(a->state, multbl, 3 - s, 1 + s);
  110. addkey(&a->state[1], &a->state[0], &a->round_key[r]);
  111. }
  112. subshift(&a->state[0], s, sbox);
  113. }
  114. static void aes_encrypt(AVAES *a, uint8_t *dst, const uint8_t *src,
  115. int count, uint8_t *iv, int rounds)
  116. {
  117. while (count--) {
  118. addkey_s(&a->state[1], src, &a->round_key[rounds]);
  119. if (iv)
  120. addkey_s(&a->state[1], iv, &a->state[1]);
  121. aes_crypt(a, 2, sbox, enc_multbl);
  122. addkey_d(dst, &a->state[0], &a->round_key[0]);
  123. if (iv)
  124. memcpy(iv, dst, 16);
  125. src += 16;
  126. dst += 16;
  127. }
  128. }
  129. static void aes_decrypt(AVAES *a, uint8_t *dst, const uint8_t *src,
  130. int count, uint8_t *iv, int rounds)
  131. {
  132. while (count--) {
  133. addkey_s(&a->state[1], src, &a->round_key[rounds]);
  134. aes_crypt(a, 0, inv_sbox, dec_multbl);
  135. if (iv) {
  136. addkey_s(&a->state[0], iv, &a->state[0]);
  137. memcpy(iv, src, 16);
  138. }
  139. addkey_d(dst, &a->state[0], &a->round_key[0]);
  140. src += 16;
  141. dst += 16;
  142. }
  143. }
  144. void av_aes_crypt(AVAES *a, uint8_t *dst, const uint8_t *src,
  145. int count, uint8_t *iv, int decrypt)
  146. {
  147. a->crypt(a, dst, src, count, iv, a->rounds);
  148. }
  149. static void init_multbl2(uint32_t tbl[][256], const int c[4],
  150. const uint8_t *log8, const uint8_t *alog8,
  151. const uint8_t *sbox)
  152. {
  153. int i;
  154. for (i = 0; i < 256; i++) {
  155. int x = sbox[i];
  156. if (x) {
  157. int k, l, m, n;
  158. x = log8[x];
  159. k = alog8[x + log8[c[0]]];
  160. l = alog8[x + log8[c[1]]];
  161. m = alog8[x + log8[c[2]]];
  162. n = alog8[x + log8[c[3]]];
  163. tbl[0][i] = AV_NE(MKBETAG(k, l, m, n), MKTAG(k, l, m, n));
  164. #if !CONFIG_SMALL
  165. tbl[1][i] = ROT(tbl[0][i], 8);
  166. tbl[2][i] = ROT(tbl[0][i], 16);
  167. tbl[3][i] = ROT(tbl[0][i], 24);
  168. #endif
  169. }
  170. }
  171. }
  172. // this is based on the reference AES code by Paulo Barreto and Vincent Rijmen
  173. int av_aes_init(AVAES *a, const uint8_t *key, int key_bits, int decrypt)
  174. {
  175. int i, j, t, rconpointer = 0;
  176. uint8_t tk[8][4];
  177. int KC = key_bits >> 5;
  178. int rounds = KC + 6;
  179. uint8_t log8[256];
  180. uint8_t alog8[512];
  181. a->crypt = decrypt ? aes_decrypt : aes_encrypt;
  182. if (!enc_multbl[FF_ARRAY_ELEMS(enc_multbl) - 1][FF_ARRAY_ELEMS(enc_multbl[0]) - 1]) {
  183. j = 1;
  184. for (i = 0; i < 255; i++) {
  185. alog8[i] = alog8[i + 255] = j;
  186. log8[j] = i;
  187. j ^= j + j;
  188. if (j > 255)
  189. j ^= 0x11B;
  190. }
  191. for (i = 0; i < 256; i++) {
  192. j = i ? alog8[255 - log8[i]] : 0;
  193. j ^= (j << 1) ^ (j << 2) ^ (j << 3) ^ (j << 4);
  194. j = (j ^ (j >> 8) ^ 99) & 255;
  195. inv_sbox[j] = i;
  196. sbox[i] = j;
  197. }
  198. init_multbl2(dec_multbl, (const int[4]) { 0xe, 0x9, 0xd, 0xb },
  199. log8, alog8, inv_sbox);
  200. init_multbl2(enc_multbl, (const int[4]) { 0x2, 0x1, 0x1, 0x3 },
  201. log8, alog8, sbox);
  202. }
  203. if (key_bits != 128 && key_bits != 192 && key_bits != 256)
  204. return AVERROR(EINVAL);
  205. a->rounds = rounds;
  206. memcpy(tk, key, KC * 4);
  207. memcpy(a->round_key[0].u8, key, KC * 4);
  208. for (t = KC * 4; t < (rounds + 1) * 16; t += KC * 4) {
  209. for (i = 0; i < 4; i++)
  210. tk[0][i] ^= sbox[tk[KC - 1][(i + 1) & 3]];
  211. tk[0][0] ^= rcon[rconpointer++];
  212. for (j = 1; j < KC; j++) {
  213. if (KC != 8 || j != KC >> 1)
  214. for (i = 0; i < 4; i++)
  215. tk[j][i] ^= tk[j - 1][i];
  216. else
  217. for (i = 0; i < 4; i++)
  218. tk[j][i] ^= sbox[tk[j - 1][i]];
  219. }
  220. memcpy(a->round_key[0].u8 + t, tk, KC * 4);
  221. }
  222. if (decrypt) {
  223. for (i = 1; i < rounds; i++) {
  224. av_aes_block tmp[3];
  225. tmp[2] = a->round_key[i];
  226. subshift(&tmp[1], 0, sbox);
  227. mix(tmp, dec_multbl, 1, 3);
  228. a->round_key[i] = tmp[0];
  229. }
  230. } else {
  231. for (i = 0; i < (rounds + 1) >> 1; i++)
  232. FFSWAP(av_aes_block, a->round_key[i], a->round_key[rounds - i]);
  233. }
  234. return 0;
  235. }