2
0

lls.h 2.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. /*
  2. * linear least squares model
  3. *
  4. * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #ifndef AVUTIL_LLS_H
  23. #define AVUTIL_LLS_H
  24. #include "macros.h"
  25. #include "mem.h"
  26. #include "version.h"
  27. #define MAX_VARS 32
  28. #define MAX_VARS_ALIGN FFALIGN(MAX_VARS+1,4)
  29. //FIXME avoid direct access to LLSModel from outside
  30. /**
  31. * Linear least squares model.
  32. */
  33. typedef struct LLSModel {
  34. DECLARE_ALIGNED(32, double, covariance[MAX_VARS_ALIGN][MAX_VARS_ALIGN]);
  35. DECLARE_ALIGNED(32, double, coeff[MAX_VARS][MAX_VARS]);
  36. double variance[MAX_VARS];
  37. int indep_count;
  38. /**
  39. * Take the outer-product of var[] with itself, and add to the covariance matrix.
  40. * @param m this context
  41. * @param var training samples, starting with the value to be predicted
  42. * 32-byte aligned, and any padding elements must be initialized
  43. * (i.e not denormal/nan).
  44. */
  45. void (*update_lls)(struct LLSModel *m, const double *var);
  46. /**
  47. * Inner product of var[] and the LPC coefs.
  48. * @param m this context
  49. * @param var training samples, excluding the value to be predicted. unaligned.
  50. * @param order lpc order
  51. */
  52. double (*evaluate_lls)(struct LLSModel *m, const double *var, int order);
  53. } LLSModel;
  54. void avpriv_init_lls(LLSModel *m, int indep_count);
  55. void ff_init_lls_x86(LLSModel *m);
  56. void avpriv_solve_lls(LLSModel *m, double threshold, unsigned short min_order);
  57. #endif /* AVUTIL_LLS_H */