123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700 |
- /*
- * copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- /**
- * @file
- * @ingroup lavu_mem
- * Memory handling functions
- */
- #ifndef AVUTIL_MEM_H
- #define AVUTIL_MEM_H
- #include <limits.h>
- #include <stdint.h>
- #include "attributes.h"
- #include "error.h"
- #include "avutil.h"
- /**
- * @addtogroup lavu_mem
- * Utilities for manipulating memory.
- *
- * FFmpeg has several applications of memory that are not required of a typical
- * program. For example, the computing-heavy components like video decoding and
- * encoding can be sped up significantly through the use of aligned memory.
- *
- * However, for each of FFmpeg's applications of memory, there might not be a
- * recognized or standardized API for that specific use. Memory alignment, for
- * instance, varies wildly depending on operating systems, architectures, and
- * compilers. Hence, this component of @ref libavutil is created to make
- * dealing with memory consistently possible on all platforms.
- *
- * @{
- *
- * @defgroup lavu_mem_macros Alignment Macros
- * Helper macros for declaring aligned variables.
- * @{
- */
- /**
- * @def DECLARE_ALIGNED(n,t,v)
- * Declare a variable that is aligned in memory.
- *
- * @code{.c}
- * DECLARE_ALIGNED(16, uint16_t, aligned_int) = 42;
- * DECLARE_ALIGNED(32, uint8_t, aligned_array)[128];
- *
- * // The default-alignment equivalent would be
- * uint16_t aligned_int = 42;
- * uint8_t aligned_array[128];
- * @endcode
- *
- * @param n Minimum alignment in bytes
- * @param t Type of the variable (or array element)
- * @param v Name of the variable
- */
- /**
- * @def DECLARE_ASM_ALIGNED(n,t,v)
- * Declare an aligned variable appropriate for use in inline assembly code.
- *
- * @code{.c}
- * DECLARE_ASM_ALIGNED(16, uint64_t, pw_08) = UINT64_C(0x0008000800080008);
- * @endcode
- *
- * @param n Minimum alignment in bytes
- * @param t Type of the variable (or array element)
- * @param v Name of the variable
- */
- /**
- * @def DECLARE_ASM_CONST(n,t,v)
- * Declare a static constant aligned variable appropriate for use in inline
- * assembly code.
- *
- * @code{.c}
- * DECLARE_ASM_CONST(16, uint64_t, pw_08) = UINT64_C(0x0008000800080008);
- * @endcode
- *
- * @param n Minimum alignment in bytes
- * @param t Type of the variable (or array element)
- * @param v Name of the variable
- */
- #if defined(__INTEL_COMPILER) && __INTEL_COMPILER < 1110 || defined(__SUNPRO_C)
- #define DECLARE_ALIGNED(n,t,v) t __attribute__ ((aligned (n))) v
- #define DECLARE_ASM_ALIGNED(n,t,v) t __attribute__ ((aligned (n))) v
- #define DECLARE_ASM_CONST(n,t,v) const t __attribute__ ((aligned (n))) v
- #elif defined(__DJGPP__)
- #define DECLARE_ALIGNED(n,t,v) t __attribute__ ((aligned (FFMIN(n, 16)))) v
- #define DECLARE_ASM_ALIGNED(n,t,v) t av_used __attribute__ ((aligned (FFMIN(n, 16)))) v
- #define DECLARE_ASM_CONST(n,t,v) static const t av_used __attribute__ ((aligned (FFMIN(n, 16)))) v
- #elif defined(__GNUC__) || defined(__clang__)
- #define DECLARE_ALIGNED(n,t,v) t __attribute__ ((aligned (n))) v
- #define DECLARE_ASM_ALIGNED(n,t,v) t av_used __attribute__ ((aligned (n))) v
- #define DECLARE_ASM_CONST(n,t,v) static const t av_used __attribute__ ((aligned (n))) v
- #elif defined(_MSC_VER)
- #define DECLARE_ALIGNED(n,t,v) __declspec(align(n)) t v
- #define DECLARE_ASM_ALIGNED(n,t,v) __declspec(align(n)) t v
- #define DECLARE_ASM_CONST(n,t,v) __declspec(align(n)) static const t v
- #else
- #define DECLARE_ALIGNED(n,t,v) t v
- #define DECLARE_ASM_ALIGNED(n,t,v) t v
- #define DECLARE_ASM_CONST(n,t,v) static const t v
- #endif
- /**
- * @}
- */
- /**
- * @defgroup lavu_mem_attrs Function Attributes
- * Function attributes applicable to memory handling functions.
- *
- * These function attributes can help compilers emit more useful warnings, or
- * generate better code.
- * @{
- */
- /**
- * @def av_malloc_attrib
- * Function attribute denoting a malloc-like function.
- *
- * @see <a href="https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-g_t_0040code_007bmalloc_007d-function-attribute-3251">Function attribute `malloc` in GCC's documentation</a>
- */
- #if AV_GCC_VERSION_AT_LEAST(3,1)
- #define av_malloc_attrib __attribute__((__malloc__))
- #else
- #define av_malloc_attrib
- #endif
- /**
- * @def av_alloc_size(...)
- * Function attribute used on a function that allocates memory, whose size is
- * given by the specified parameter(s).
- *
- * @code{.c}
- * void *av_malloc(size_t size) av_alloc_size(1);
- * void *av_calloc(size_t nmemb, size_t size) av_alloc_size(1, 2);
- * @endcode
- *
- * @param ... One or two parameter indexes, separated by a comma
- *
- * @see <a href="https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-g_t_0040code_007balloc_005fsize_007d-function-attribute-3220">Function attribute `alloc_size` in GCC's documentation</a>
- */
- #if AV_GCC_VERSION_AT_LEAST(4,3)
- #define av_alloc_size(...) __attribute__((alloc_size(__VA_ARGS__)))
- #else
- #define av_alloc_size(...)
- #endif
- /**
- * @}
- */
- /**
- * @defgroup lavu_mem_funcs Heap Management
- * Functions responsible for allocating, freeing, and copying memory.
- *
- * All memory allocation functions have a built-in upper limit of `INT_MAX`
- * bytes. This may be changed with av_max_alloc(), although exercise extreme
- * caution when doing so.
- *
- * @{
- */
- /**
- * Allocate a memory block with alignment suitable for all memory accesses
- * (including vectors if available on the CPU).
- *
- * @param size Size in bytes for the memory block to be allocated
- * @return Pointer to the allocated block, or `NULL` if the block cannot
- * be allocated
- * @see av_mallocz()
- */
- void *av_malloc(size_t size) av_malloc_attrib av_alloc_size(1);
- /**
- * Allocate a memory block with alignment suitable for all memory accesses
- * (including vectors if available on the CPU) and zero all the bytes of the
- * block.
- *
- * @param size Size in bytes for the memory block to be allocated
- * @return Pointer to the allocated block, or `NULL` if it cannot be allocated
- * @see av_malloc()
- */
- void *av_mallocz(size_t size) av_malloc_attrib av_alloc_size(1);
- /**
- * Allocate a memory block for an array with av_malloc().
- *
- * The allocated memory will have size `size * nmemb` bytes.
- *
- * @param nmemb Number of element
- * @param size Size of a single element
- * @return Pointer to the allocated block, or `NULL` if the block cannot
- * be allocated
- * @see av_malloc()
- */
- av_alloc_size(1, 2) void *av_malloc_array(size_t nmemb, size_t size);
- /**
- * Allocate a memory block for an array with av_mallocz().
- *
- * The allocated memory will have size `size * nmemb` bytes.
- *
- * @param nmemb Number of elements
- * @param size Size of the single element
- * @return Pointer to the allocated block, or `NULL` if the block cannot
- * be allocated
- *
- * @see av_mallocz()
- * @see av_malloc_array()
- */
- av_alloc_size(1, 2) void *av_mallocz_array(size_t nmemb, size_t size);
- /**
- * Non-inlined equivalent of av_mallocz_array().
- *
- * Created for symmetry with the calloc() C function.
- */
- void *av_calloc(size_t nmemb, size_t size) av_malloc_attrib;
- /**
- * Allocate, reallocate, or free a block of memory.
- *
- * If `ptr` is `NULL` and `size` > 0, allocate a new block. If `size` is
- * zero, free the memory block pointed to by `ptr`. Otherwise, expand or
- * shrink that block of memory according to `size`.
- *
- * @param ptr Pointer to a memory block already allocated with
- * av_realloc() or `NULL`
- * @param size Size in bytes of the memory block to be allocated or
- * reallocated
- *
- * @return Pointer to a newly-reallocated block or `NULL` if the block
- * cannot be reallocated or the function is used to free the memory block
- *
- * @warning Unlike av_malloc(), the returned pointer is not guaranteed to be
- * correctly aligned.
- * @see av_fast_realloc()
- * @see av_reallocp()
- */
- void *av_realloc(void *ptr, size_t size) av_alloc_size(2);
- /**
- * Allocate, reallocate, or free a block of memory through a pointer to a
- * pointer.
- *
- * If `*ptr` is `NULL` and `size` > 0, allocate a new block. If `size` is
- * zero, free the memory block pointed to by `*ptr`. Otherwise, expand or
- * shrink that block of memory according to `size`.
- *
- * @param[in,out] ptr Pointer to a pointer to a memory block already allocated
- * with av_realloc(), or a pointer to `NULL`. The pointer
- * is updated on success, or freed on failure.
- * @param[in] size Size in bytes for the memory block to be allocated or
- * reallocated
- *
- * @return Zero on success, an AVERROR error code on failure
- *
- * @warning Unlike av_malloc(), the allocated memory is not guaranteed to be
- * correctly aligned.
- */
- av_warn_unused_result
- int av_reallocp(void *ptr, size_t size);
- /**
- * Allocate, reallocate, or free a block of memory.
- *
- * This function does the same thing as av_realloc(), except:
- * - It takes two size arguments and allocates `nelem * elsize` bytes,
- * after checking the result of the multiplication for integer overflow.
- * - It frees the input block in case of failure, thus avoiding the memory
- * leak with the classic
- * @code{.c}
- * buf = realloc(buf);
- * if (!buf)
- * return -1;
- * @endcode
- * pattern.
- */
- void *av_realloc_f(void *ptr, size_t nelem, size_t elsize);
- /**
- * Allocate, reallocate, or free an array.
- *
- * If `ptr` is `NULL` and `nmemb` > 0, allocate a new block. If
- * `nmemb` is zero, free the memory block pointed to by `ptr`.
- *
- * @param ptr Pointer to a memory block already allocated with
- * av_realloc() or `NULL`
- * @param nmemb Number of elements in the array
- * @param size Size of the single element of the array
- *
- * @return Pointer to a newly-reallocated block or NULL if the block
- * cannot be reallocated or the function is used to free the memory block
- *
- * @warning Unlike av_malloc(), the allocated memory is not guaranteed to be
- * correctly aligned.
- * @see av_reallocp_array()
- */
- av_alloc_size(2, 3) void *av_realloc_array(void *ptr, size_t nmemb, size_t size);
- /**
- * Allocate, reallocate, or free an array through a pointer to a pointer.
- *
- * If `*ptr` is `NULL` and `nmemb` > 0, allocate a new block. If `nmemb` is
- * zero, free the memory block pointed to by `*ptr`.
- *
- * @param[in,out] ptr Pointer to a pointer to a memory block already
- * allocated with av_realloc(), or a pointer to `NULL`.
- * The pointer is updated on success, or freed on failure.
- * @param[in] nmemb Number of elements
- * @param[in] size Size of the single element
- *
- * @return Zero on success, an AVERROR error code on failure
- *
- * @warning Unlike av_malloc(), the allocated memory is not guaranteed to be
- * correctly aligned.
- */
- int av_reallocp_array(void *ptr, size_t nmemb, size_t size);
- /**
- * Reallocate the given buffer if it is not large enough, otherwise do nothing.
- *
- * If the given buffer is `NULL`, then a new uninitialized buffer is allocated.
- *
- * If the given buffer is not large enough, and reallocation fails, `NULL` is
- * returned and `*size` is set to 0, but the original buffer is not changed or
- * freed.
- *
- * A typical use pattern follows:
- *
- * @code{.c}
- * uint8_t *buf = ...;
- * uint8_t *new_buf = av_fast_realloc(buf, ¤t_size, size_needed);
- * if (!new_buf) {
- * // Allocation failed; clean up original buffer
- * av_freep(&buf);
- * return AVERROR(ENOMEM);
- * }
- * @endcode
- *
- * @param[in,out] ptr Already allocated buffer, or `NULL`
- * @param[in,out] size Pointer to current size of buffer `ptr`. `*size` is
- * changed to `min_size` in case of success or 0 in
- * case of failure
- * @param[in] min_size New size of buffer `ptr`
- * @return `ptr` if the buffer is large enough, a pointer to newly reallocated
- * buffer if the buffer was not large enough, or `NULL` in case of
- * error
- * @see av_realloc()
- * @see av_fast_malloc()
- */
- void *av_fast_realloc(void *ptr, unsigned int *size, size_t min_size);
- /**
- * Allocate a buffer, reusing the given one if large enough.
- *
- * Contrary to av_fast_realloc(), the current buffer contents might not be
- * preserved and on error the old buffer is freed, thus no special handling to
- * avoid memleaks is necessary.
- *
- * `*ptr` is allowed to be `NULL`, in which case allocation always happens if
- * `size_needed` is greater than 0.
- *
- * @code{.c}
- * uint8_t *buf = ...;
- * av_fast_malloc(&buf, ¤t_size, size_needed);
- * if (!buf) {
- * // Allocation failed; buf already freed
- * return AVERROR(ENOMEM);
- * }
- * @endcode
- *
- * @param[in,out] ptr Pointer to pointer to an already allocated buffer.
- * `*ptr` will be overwritten with pointer to new
- * buffer on success or `NULL` on failure
- * @param[in,out] size Pointer to current size of buffer `*ptr`. `*size` is
- * changed to `min_size` in case of success or 0 in
- * case of failure
- * @param[in] min_size New size of buffer `*ptr`
- * @see av_realloc()
- * @see av_fast_mallocz()
- */
- void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size);
- /**
- * Allocate and clear a buffer, reusing the given one if large enough.
- *
- * Like av_fast_malloc(), but all newly allocated space is initially cleared.
- * Reused buffer is not cleared.
- *
- * `*ptr` is allowed to be `NULL`, in which case allocation always happens if
- * `size_needed` is greater than 0.
- *
- * @param[in,out] ptr Pointer to pointer to an already allocated buffer.
- * `*ptr` will be overwritten with pointer to new
- * buffer on success or `NULL` on failure
- * @param[in,out] size Pointer to current size of buffer `*ptr`. `*size` is
- * changed to `min_size` in case of success or 0 in
- * case of failure
- * @param[in] min_size New size of buffer `*ptr`
- * @see av_fast_malloc()
- */
- void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size);
- /**
- * Free a memory block which has been allocated with a function of av_malloc()
- * or av_realloc() family.
- *
- * @param ptr Pointer to the memory block which should be freed.
- *
- * @note `ptr = NULL` is explicitly allowed.
- * @note It is recommended that you use av_freep() instead, to prevent leaving
- * behind dangling pointers.
- * @see av_freep()
- */
- void av_free(void *ptr);
- /**
- * Free a memory block which has been allocated with a function of av_malloc()
- * or av_realloc() family, and set the pointer pointing to it to `NULL`.
- *
- * @code{.c}
- * uint8_t *buf = av_malloc(16);
- * av_free(buf);
- * // buf now contains a dangling pointer to freed memory, and accidental
- * // dereference of buf will result in a use-after-free, which may be a
- * // security risk.
- *
- * uint8_t *buf = av_malloc(16);
- * av_freep(&buf);
- * // buf is now NULL, and accidental dereference will only result in a
- * // NULL-pointer dereference.
- * @endcode
- *
- * @param ptr Pointer to the pointer to the memory block which should be freed
- * @note `*ptr = NULL` is safe and leads to no action.
- * @see av_free()
- */
- void av_freep(void *ptr);
- /**
- * Duplicate a string.
- *
- * @param s String to be duplicated
- * @return Pointer to a newly-allocated string containing a
- * copy of `s` or `NULL` if the string cannot be allocated
- * @see av_strndup()
- */
- char *av_strdup(const char *s) av_malloc_attrib;
- /**
- * Duplicate a substring of a string.
- *
- * @param s String to be duplicated
- * @param len Maximum length of the resulting string (not counting the
- * terminating byte)
- * @return Pointer to a newly-allocated string containing a
- * substring of `s` or `NULL` if the string cannot be allocated
- */
- char *av_strndup(const char *s, size_t len) av_malloc_attrib;
- /**
- * Duplicate a buffer with av_malloc().
- *
- * @param p Buffer to be duplicated
- * @param size Size in bytes of the buffer copied
- * @return Pointer to a newly allocated buffer containing a
- * copy of `p` or `NULL` if the buffer cannot be allocated
- */
- void *av_memdup(const void *p, size_t size);
- /**
- * Overlapping memcpy() implementation.
- *
- * @param dst Destination buffer
- * @param back Number of bytes back to start copying (i.e. the initial size of
- * the overlapping window); must be > 0
- * @param cnt Number of bytes to copy; must be >= 0
- *
- * @note `cnt > back` is valid, this will copy the bytes we just copied,
- * thus creating a repeating pattern with a period length of `back`.
- */
- void av_memcpy_backptr(uint8_t *dst, int back, int cnt);
- /**
- * @}
- */
- /**
- * @defgroup lavu_mem_dynarray Dynamic Array
- *
- * Utilities to make an array grow when needed.
- *
- * Sometimes, the programmer would want to have an array that can grow when
- * needed. The libavutil dynamic array utilities fill that need.
- *
- * libavutil supports two systems of appending elements onto a dynamically
- * allocated array, the first one storing the pointer to the value in the
- * array, and the second storing the value directly. In both systems, the
- * caller is responsible for maintaining a variable containing the length of
- * the array, as well as freeing of the array after use.
- *
- * The first system stores pointers to values in a block of dynamically
- * allocated memory. Since only pointers are stored, the function does not need
- * to know the size of the type. Both av_dynarray_add() and
- * av_dynarray_add_nofree() implement this system.
- *
- * @code
- * type **array = NULL; //< an array of pointers to values
- * int nb = 0; //< a variable to keep track of the length of the array
- *
- * type to_be_added = ...;
- * type to_be_added2 = ...;
- *
- * av_dynarray_add(&array, &nb, &to_be_added);
- * if (nb == 0)
- * return AVERROR(ENOMEM);
- *
- * av_dynarray_add(&array, &nb, &to_be_added2);
- * if (nb == 0)
- * return AVERROR(ENOMEM);
- *
- * // Now:
- * // nb == 2
- * // &to_be_added == array[0]
- * // &to_be_added2 == array[1]
- *
- * av_freep(&array);
- * @endcode
- *
- * The second system stores the value directly in a block of memory. As a
- * result, the function has to know the size of the type. av_dynarray2_add()
- * implements this mechanism.
- *
- * @code
- * type *array = NULL; //< an array of values
- * int nb = 0; //< a variable to keep track of the length of the array
- *
- * type to_be_added = ...;
- * type to_be_added2 = ...;
- *
- * type *addr = av_dynarray2_add((void **)&array, &nb, sizeof(*array), NULL);
- * if (!addr)
- * return AVERROR(ENOMEM);
- * memcpy(addr, &to_be_added, sizeof(to_be_added));
- *
- * // Shortcut of the above.
- * type *addr = av_dynarray2_add((void **)&array, &nb, sizeof(*array),
- * (const void *)&to_be_added2);
- * if (!addr)
- * return AVERROR(ENOMEM);
- *
- * // Now:
- * // nb == 2
- * // to_be_added == array[0]
- * // to_be_added2 == array[1]
- *
- * av_freep(&array);
- * @endcode
- *
- * @{
- */
- /**
- * Add the pointer to an element to a dynamic array.
- *
- * The array to grow is supposed to be an array of pointers to
- * structures, and the element to add must be a pointer to an already
- * allocated structure.
- *
- * The array is reallocated when its size reaches powers of 2.
- * Therefore, the amortized cost of adding an element is constant.
- *
- * In case of success, the pointer to the array is updated in order to
- * point to the new grown array, and the number pointed to by `nb_ptr`
- * is incremented.
- * In case of failure, the array is freed, `*tab_ptr` is set to `NULL` and
- * `*nb_ptr` is set to 0.
- *
- * @param[in,out] tab_ptr Pointer to the array to grow
- * @param[in,out] nb_ptr Pointer to the number of elements in the array
- * @param[in] elem Element to add
- * @see av_dynarray_add_nofree(), av_dynarray2_add()
- */
- void av_dynarray_add(void *tab_ptr, int *nb_ptr, void *elem);
- /**
- * Add an element to a dynamic array.
- *
- * Function has the same functionality as av_dynarray_add(),
- * but it doesn't free memory on fails. It returns error code
- * instead and leave current buffer untouched.
- *
- * @return >=0 on success, negative otherwise
- * @see av_dynarray_add(), av_dynarray2_add()
- */
- av_warn_unused_result
- int av_dynarray_add_nofree(void *tab_ptr, int *nb_ptr, void *elem);
- /**
- * Add an element of size `elem_size` to a dynamic array.
- *
- * The array is reallocated when its number of elements reaches powers of 2.
- * Therefore, the amortized cost of adding an element is constant.
- *
- * In case of success, the pointer to the array is updated in order to
- * point to the new grown array, and the number pointed to by `nb_ptr`
- * is incremented.
- * In case of failure, the array is freed, `*tab_ptr` is set to `NULL` and
- * `*nb_ptr` is set to 0.
- *
- * @param[in,out] tab_ptr Pointer to the array to grow
- * @param[in,out] nb_ptr Pointer to the number of elements in the array
- * @param[in] elem_size Size in bytes of an element in the array
- * @param[in] elem_data Pointer to the data of the element to add. If
- * `NULL`, the space of the newly added element is
- * allocated but left uninitialized.
- *
- * @return Pointer to the data of the element to copy in the newly allocated
- * space
- * @see av_dynarray_add(), av_dynarray_add_nofree()
- */
- void *av_dynarray2_add(void **tab_ptr, int *nb_ptr, size_t elem_size,
- const uint8_t *elem_data);
- /**
- * @}
- */
- /**
- * @defgroup lavu_mem_misc Miscellaneous Functions
- *
- * Other functions related to memory allocation.
- *
- * @{
- */
- /**
- * Multiply two `size_t` values checking for overflow.
- *
- * @param[in] a,b Operands of multiplication
- * @param[out] r Pointer to the result of the operation
- * @return 0 on success, AVERROR(EINVAL) on overflow
- */
- static inline int av_size_mult(size_t a, size_t b, size_t *r)
- {
- size_t t = a * b;
- /* Hack inspired from glibc: don't try the division if nelem and elsize
- * are both less than sqrt(SIZE_MAX). */
- if ((a | b) >= ((size_t)1 << (sizeof(size_t) * 4)) && a && t / a != b)
- return AVERROR(EINVAL);
- *r = t;
- return 0;
- }
- /**
- * Set the maximum size that may be allocated in one block.
- *
- * The value specified with this function is effective for all libavutil's @ref
- * lavu_mem_funcs "heap management functions."
- *
- * By default, the max value is defined as `INT_MAX`.
- *
- * @param max Value to be set as the new maximum size
- *
- * @warning Exercise extreme caution when using this function. Don't touch
- * this if you do not understand the full consequence of doing so.
- */
- void av_max_alloc(size_t max);
- /**
- * @}
- * @}
- */
- #endif /* AVUTIL_MEM_H */
|