2
0

rational.c 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. /*
  2. * rational numbers
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * rational numbers
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "avassert.h"
  27. #include <limits.h>
  28. #include "common.h"
  29. #include "mathematics.h"
  30. #include "rational.h"
  31. int av_reduce(int *dst_num, int *dst_den,
  32. int64_t num, int64_t den, int64_t max)
  33. {
  34. AVRational a0 = { 0, 1 }, a1 = { 1, 0 };
  35. int sign = (num < 0) ^ (den < 0);
  36. int64_t gcd = av_gcd(FFABS(num), FFABS(den));
  37. if (gcd) {
  38. num = FFABS(num) / gcd;
  39. den = FFABS(den) / gcd;
  40. }
  41. if (num <= max && den <= max) {
  42. a1 = (AVRational) { num, den };
  43. den = 0;
  44. }
  45. while (den) {
  46. uint64_t x = num / den;
  47. int64_t next_den = num - den * x;
  48. int64_t a2n = x * a1.num + a0.num;
  49. int64_t a2d = x * a1.den + a0.den;
  50. if (a2n > max || a2d > max) {
  51. if (a1.num) x = (max - a0.num) / a1.num;
  52. if (a1.den) x = FFMIN(x, (max - a0.den) / a1.den);
  53. if (den * (2 * x * a1.den + a0.den) > num * a1.den)
  54. a1 = (AVRational) { x * a1.num + a0.num, x * a1.den + a0.den };
  55. break;
  56. }
  57. a0 = a1;
  58. a1 = (AVRational) { a2n, a2d };
  59. num = den;
  60. den = next_den;
  61. }
  62. av_assert2(av_gcd(a1.num, a1.den) <= 1U);
  63. av_assert2(a1.num <= max && a1.den <= max);
  64. *dst_num = sign ? -a1.num : a1.num;
  65. *dst_den = a1.den;
  66. return den == 0;
  67. }
  68. AVRational av_mul_q(AVRational b, AVRational c)
  69. {
  70. av_reduce(&b.num, &b.den,
  71. b.num * (int64_t) c.num,
  72. b.den * (int64_t) c.den, INT_MAX);
  73. return b;
  74. }
  75. AVRational av_div_q(AVRational b, AVRational c)
  76. {
  77. return av_mul_q(b, (AVRational) { c.den, c.num });
  78. }
  79. AVRational av_add_q(AVRational b, AVRational c) {
  80. av_reduce(&b.num, &b.den,
  81. b.num * (int64_t) c.den +
  82. c.num * (int64_t) b.den,
  83. b.den * (int64_t) c.den, INT_MAX);
  84. return b;
  85. }
  86. AVRational av_sub_q(AVRational b, AVRational c)
  87. {
  88. return av_add_q(b, (AVRational) { -c.num, c.den });
  89. }
  90. AVRational av_d2q(double d, int max)
  91. {
  92. AVRational a;
  93. int exponent;
  94. int64_t den;
  95. if (isnan(d))
  96. return (AVRational) { 0,0 };
  97. if (fabs(d) > INT_MAX + 3LL)
  98. return (AVRational) { d < 0 ? -1 : 1, 0 };
  99. frexp(d, &exponent);
  100. exponent = FFMAX(exponent-1, 0);
  101. den = 1LL << (61 - exponent);
  102. // (int64_t)rint() and llrint() do not work with gcc on ia64 and sparc64,
  103. // see Ticket2713 for affected gcc/glibc versions
  104. av_reduce(&a.num, &a.den, floor(d * den + 0.5), den, max);
  105. if ((!a.num || !a.den) && d && max>0 && max<INT_MAX)
  106. av_reduce(&a.num, &a.den, floor(d * den + 0.5), den, INT_MAX);
  107. return a;
  108. }
  109. int av_nearer_q(AVRational q, AVRational q1, AVRational q2)
  110. {
  111. /* n/d is q, a/b is the median between q1 and q2 */
  112. int64_t a = q1.num * (int64_t)q2.den + q2.num * (int64_t)q1.den;
  113. int64_t b = 2 * (int64_t)q1.den * q2.den;
  114. /* rnd_up(a*d/b) > n => a*d/b > n */
  115. int64_t x_up = av_rescale_rnd(a, q.den, b, AV_ROUND_UP);
  116. /* rnd_down(a*d/b) < n => a*d/b < n */
  117. int64_t x_down = av_rescale_rnd(a, q.den, b, AV_ROUND_DOWN);
  118. return ((x_up > q.num) - (x_down < q.num)) * av_cmp_q(q2, q1);
  119. }
  120. int av_find_nearest_q_idx(AVRational q, const AVRational* q_list)
  121. {
  122. int i, nearest_q_idx = 0;
  123. for (i = 0; q_list[i].den; i++)
  124. if (av_nearer_q(q, q_list[i], q_list[nearest_q_idx]) > 0)
  125. nearest_q_idx = i;
  126. return nearest_q_idx;
  127. }
  128. uint32_t av_q2intfloat(AVRational q) {
  129. int64_t n;
  130. int shift;
  131. int sign = 0;
  132. if (q.den < 0) {
  133. q.den *= -1;
  134. q.num *= -1;
  135. }
  136. if (q.num < 0) {
  137. q.num *= -1;
  138. sign = 1;
  139. }
  140. if (!q.num && !q.den) return 0xFFC00000;
  141. if (!q.num) return 0;
  142. if (!q.den) return 0x7F800000 | (q.num & 0x80000000);
  143. shift = 23 + av_log2(q.den) - av_log2(q.num);
  144. if (shift >= 0) n = av_rescale(q.num, 1LL<<shift, q.den);
  145. else n = av_rescale(q.num, 1, ((int64_t)q.den) << -shift);
  146. shift -= n >= (1<<24);
  147. shift += n < (1<<23);
  148. if (shift >= 0) n = av_rescale(q.num, 1LL<<shift, q.den);
  149. else n = av_rescale(q.num, 1, ((int64_t)q.den) << -shift);
  150. av_assert1(n < (1<<24));
  151. av_assert1(n >= (1<<23));
  152. return sign<<31 | (150-shift)<<23 | (n - (1<<23));
  153. }