123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964 |
- /*
- * AAC coefficients encoder
- * Copyright (C) 2008-2009 Konstantin Shishkov
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- /**
- * @file
- * AAC coefficients encoder
- */
- /***********************************
- * TODOs:
- * speedup quantizer selection
- * add sane pulse detection
- ***********************************/
- #include "libavutil/libm.h" // brought forward to work around cygwin header breakage
- #include <float.h>
- #include "libavutil/mathematics.h"
- #include "mathops.h"
- #include "avcodec.h"
- #include "put_bits.h"
- #include "aac.h"
- #include "aacenc.h"
- #include "aactab.h"
- #include "aacenctab.h"
- #include "aacenc_utils.h"
- #include "aacenc_quantization.h"
- #include "aacenc_is.h"
- #include "aacenc_tns.h"
- #include "aacenc_ltp.h"
- #include "aacenc_pred.h"
- #include "libavcodec/aaccoder_twoloop.h"
- /* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
- * beyond which no PNS is used (since the SFBs contain tone rather than noise) */
- #define NOISE_SPREAD_THRESHOLD 0.9f
- /* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
- * replace low energy non zero bands */
- #define NOISE_LAMBDA_REPLACE 1.948f
- #include "libavcodec/aaccoder_trellis.h"
- /**
- * structure used in optimal codebook search
- */
- typedef struct BandCodingPath {
- int prev_idx; ///< pointer to the previous path point
- float cost; ///< path cost
- int run;
- } BandCodingPath;
- /**
- * Encode band info for single window group bands.
- */
- static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
- int win, int group_len, const float lambda)
- {
- BandCodingPath path[120][CB_TOT_ALL];
- int w, swb, cb, start, size;
- int i, j;
- const int max_sfb = sce->ics.max_sfb;
- const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
- const int run_esc = (1 << run_bits) - 1;
- int idx, ppos, count;
- int stackrun[120], stackcb[120], stack_len;
- float next_minrd = INFINITY;
- int next_mincb = 0;
- s->abs_pow34(s->scoefs, sce->coeffs, 1024);
- start = win*128;
- for (cb = 0; cb < CB_TOT_ALL; cb++) {
- path[0][cb].cost = 0.0f;
- path[0][cb].prev_idx = -1;
- path[0][cb].run = 0;
- }
- for (swb = 0; swb < max_sfb; swb++) {
- size = sce->ics.swb_sizes[swb];
- if (sce->zeroes[win*16 + swb]) {
- for (cb = 0; cb < CB_TOT_ALL; cb++) {
- path[swb+1][cb].prev_idx = cb;
- path[swb+1][cb].cost = path[swb][cb].cost;
- path[swb+1][cb].run = path[swb][cb].run + 1;
- }
- } else {
- float minrd = next_minrd;
- int mincb = next_mincb;
- next_minrd = INFINITY;
- next_mincb = 0;
- for (cb = 0; cb < CB_TOT_ALL; cb++) {
- float cost_stay_here, cost_get_here;
- float rd = 0.0f;
- if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
- cb < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
- path[swb+1][cb].prev_idx = -1;
- path[swb+1][cb].cost = INFINITY;
- path[swb+1][cb].run = path[swb][cb].run + 1;
- continue;
- }
- for (w = 0; w < group_len; w++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
- rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
- &s->scoefs[start + w*128], size,
- sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
- lambda / band->threshold, INFINITY, NULL, NULL, 0);
- }
- cost_stay_here = path[swb][cb].cost + rd;
- cost_get_here = minrd + rd + run_bits + 4;
- if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
- != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
- cost_stay_here += run_bits;
- if (cost_get_here < cost_stay_here) {
- path[swb+1][cb].prev_idx = mincb;
- path[swb+1][cb].cost = cost_get_here;
- path[swb+1][cb].run = 1;
- } else {
- path[swb+1][cb].prev_idx = cb;
- path[swb+1][cb].cost = cost_stay_here;
- path[swb+1][cb].run = path[swb][cb].run + 1;
- }
- if (path[swb+1][cb].cost < next_minrd) {
- next_minrd = path[swb+1][cb].cost;
- next_mincb = cb;
- }
- }
- }
- start += sce->ics.swb_sizes[swb];
- }
- //convert resulting path from backward-linked list
- stack_len = 0;
- idx = 0;
- for (cb = 1; cb < CB_TOT_ALL; cb++)
- if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
- idx = cb;
- ppos = max_sfb;
- while (ppos > 0) {
- av_assert1(idx >= 0);
- cb = idx;
- stackrun[stack_len] = path[ppos][cb].run;
- stackcb [stack_len] = cb;
- idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
- ppos -= path[ppos][cb].run;
- stack_len++;
- }
- //perform actual band info encoding
- start = 0;
- for (i = stack_len - 1; i >= 0; i--) {
- cb = aac_cb_out_map[stackcb[i]];
- put_bits(&s->pb, 4, cb);
- count = stackrun[i];
- memset(sce->zeroes + win*16 + start, !cb, count);
- //XXX: memset when band_type is also uint8_t
- for (j = 0; j < count; j++) {
- sce->band_type[win*16 + start] = cb;
- start++;
- }
- while (count >= run_esc) {
- put_bits(&s->pb, run_bits, run_esc);
- count -= run_esc;
- }
- put_bits(&s->pb, run_bits, count);
- }
- }
- typedef struct TrellisPath {
- float cost;
- int prev;
- } TrellisPath;
- #define TRELLIS_STAGES 121
- #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
- static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
- {
- int w, g;
- int prevscaler_n = -255, prevscaler_i = 0;
- int bands = 0;
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- for (g = 0; g < sce->ics.num_swb; g++) {
- if (sce->zeroes[w*16+g])
- continue;
- if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
- sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
- bands++;
- } else if (sce->band_type[w*16+g] == NOISE_BT) {
- sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155);
- if (prevscaler_n == -255)
- prevscaler_n = sce->sf_idx[w*16+g];
- bands++;
- }
- }
- }
- if (!bands)
- return;
- /* Clip the scalefactor indices */
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- for (g = 0; g < sce->ics.num_swb; g++) {
- if (sce->zeroes[w*16+g])
- continue;
- if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
- sce->sf_idx[w*16+g] = prevscaler_i = av_clip(sce->sf_idx[w*16+g], prevscaler_i - SCALE_MAX_DIFF, prevscaler_i + SCALE_MAX_DIFF);
- } else if (sce->band_type[w*16+g] == NOISE_BT) {
- sce->sf_idx[w*16+g] = prevscaler_n = av_clip(sce->sf_idx[w*16+g], prevscaler_n - SCALE_MAX_DIFF, prevscaler_n + SCALE_MAX_DIFF);
- }
- }
- }
- }
- static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
- SingleChannelElement *sce,
- const float lambda)
- {
- int q, w, w2, g, start = 0;
- int i, j;
- int idx;
- TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
- int bandaddr[TRELLIS_STAGES];
- int minq;
- float mincost;
- float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
- int q0, q1, qcnt = 0;
- for (i = 0; i < 1024; i++) {
- float t = fabsf(sce->coeffs[i]);
- if (t > 0.0f) {
- q0f = FFMIN(q0f, t);
- q1f = FFMAX(q1f, t);
- qnrgf += t*t;
- qcnt++;
- }
- }
- if (!qcnt) {
- memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
- memset(sce->zeroes, 1, sizeof(sce->zeroes));
- return;
- }
- //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
- q0 = av_clip(coef2minsf(q0f), 0, SCALE_MAX_POS-1);
- //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
- q1 = av_clip(coef2maxsf(q1f), 1, SCALE_MAX_POS);
- if (q1 - q0 > 60) {
- int q0low = q0;
- int q1high = q1;
- //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
- int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
- q1 = qnrg + 30;
- q0 = qnrg - 30;
- if (q0 < q0low) {
- q1 += q0low - q0;
- q0 = q0low;
- } else if (q1 > q1high) {
- q0 -= q1 - q1high;
- q1 = q1high;
- }
- }
- // q0 == q1 isn't really a legal situation
- if (q0 == q1) {
- // the following is indirect but guarantees q1 != q0 && q1 near q0
- q1 = av_clip(q0+1, 1, SCALE_MAX_POS);
- q0 = av_clip(q1-1, 0, SCALE_MAX_POS - 1);
- }
- for (i = 0; i < TRELLIS_STATES; i++) {
- paths[0][i].cost = 0.0f;
- paths[0][i].prev = -1;
- }
- for (j = 1; j < TRELLIS_STAGES; j++) {
- for (i = 0; i < TRELLIS_STATES; i++) {
- paths[j][i].cost = INFINITY;
- paths[j][i].prev = -2;
- }
- }
- idx = 1;
- s->abs_pow34(s->scoefs, sce->coeffs, 1024);
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = w*128;
- for (g = 0; g < sce->ics.num_swb; g++) {
- const float *coefs = &sce->coeffs[start];
- float qmin, qmax;
- int nz = 0;
- bandaddr[idx] = w * 16 + g;
- qmin = INT_MAX;
- qmax = 0.0f;
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- if (band->energy <= band->threshold || band->threshold == 0.0f) {
- sce->zeroes[(w+w2)*16+g] = 1;
- continue;
- }
- sce->zeroes[(w+w2)*16+g] = 0;
- nz = 1;
- for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
- float t = fabsf(coefs[w2*128+i]);
- if (t > 0.0f)
- qmin = FFMIN(qmin, t);
- qmax = FFMAX(qmax, t);
- }
- }
- if (nz) {
- int minscale, maxscale;
- float minrd = INFINITY;
- float maxval;
- //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
- minscale = coef2minsf(qmin);
- //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
- maxscale = coef2maxsf(qmax);
- minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
- maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
- if (minscale == maxscale) {
- maxscale = av_clip(minscale+1, 1, TRELLIS_STATES);
- minscale = av_clip(maxscale-1, 0, TRELLIS_STATES - 1);
- }
- maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
- for (q = minscale; q < maxscale; q++) {
- float dist = 0;
- int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
- q + q0, cb, lambda / band->threshold, INFINITY, NULL, NULL, 0);
- }
- minrd = FFMIN(minrd, dist);
- for (i = 0; i < q1 - q0; i++) {
- float cost;
- cost = paths[idx - 1][i].cost + dist
- + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
- if (cost < paths[idx][q].cost) {
- paths[idx][q].cost = cost;
- paths[idx][q].prev = i;
- }
- }
- }
- } else {
- for (q = 0; q < q1 - q0; q++) {
- paths[idx][q].cost = paths[idx - 1][q].cost + 1;
- paths[idx][q].prev = q;
- }
- }
- sce->zeroes[w*16+g] = !nz;
- start += sce->ics.swb_sizes[g];
- idx++;
- }
- }
- idx--;
- mincost = paths[idx][0].cost;
- minq = 0;
- for (i = 1; i < TRELLIS_STATES; i++) {
- if (paths[idx][i].cost < mincost) {
- mincost = paths[idx][i].cost;
- minq = i;
- }
- }
- while (idx) {
- sce->sf_idx[bandaddr[idx]] = minq + q0;
- minq = FFMAX(paths[idx][minq].prev, 0);
- idx--;
- }
- //set the same quantizers inside window groups
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
- for (g = 0; g < sce->ics.num_swb; g++)
- for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
- sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
- }
- static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
- SingleChannelElement *sce,
- const float lambda)
- {
- int start = 0, i, w, w2, g;
- int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
- float dists[128] = { 0 }, uplims[128] = { 0 };
- float maxvals[128];
- int fflag, minscaler;
- int its = 0;
- int allz = 0;
- float minthr = INFINITY;
- // for values above this the decoder might end up in an endless loop
- // due to always having more bits than what can be encoded.
- destbits = FFMIN(destbits, 5800);
- //some heuristic to determine initial quantizers will reduce search time
- //determine zero bands and upper limits
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = 0;
- for (g = 0; g < sce->ics.num_swb; g++) {
- int nz = 0;
- float uplim = 0.0f, energy = 0.0f;
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- uplim += band->threshold;
- energy += band->energy;
- if (band->energy <= band->threshold || band->threshold == 0.0f) {
- sce->zeroes[(w+w2)*16+g] = 1;
- continue;
- }
- nz = 1;
- }
- uplims[w*16+g] = uplim *512;
- sce->band_type[w*16+g] = 0;
- sce->zeroes[w*16+g] = !nz;
- if (nz)
- minthr = FFMIN(minthr, uplim);
- allz |= nz;
- start += sce->ics.swb_sizes[g];
- }
- }
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- for (g = 0; g < sce->ics.num_swb; g++) {
- if (sce->zeroes[w*16+g]) {
- sce->sf_idx[w*16+g] = SCALE_ONE_POS;
- continue;
- }
- sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
- }
- }
- if (!allz)
- return;
- s->abs_pow34(s->scoefs, sce->coeffs, 1024);
- ff_quantize_band_cost_cache_init(s);
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = w*128;
- for (g = 0; g < sce->ics.num_swb; g++) {
- const float *scaled = s->scoefs + start;
- maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
- start += sce->ics.swb_sizes[g];
- }
- }
- //perform two-loop search
- //outer loop - improve quality
- do {
- int tbits, qstep;
- minscaler = sce->sf_idx[0];
- //inner loop - quantize spectrum to fit into given number of bits
- qstep = its ? 1 : 32;
- do {
- int prev = -1;
- tbits = 0;
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = w*128;
- for (g = 0; g < sce->ics.num_swb; g++) {
- const float *coefs = sce->coeffs + start;
- const float *scaled = s->scoefs + start;
- int bits = 0;
- int cb;
- float dist = 0.0f;
- if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
- start += sce->ics.swb_sizes[g];
- continue;
- }
- minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
- cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- int b;
- dist += quantize_band_cost_cached(s, w + w2, g,
- coefs + w2*128,
- scaled + w2*128,
- sce->ics.swb_sizes[g],
- sce->sf_idx[w*16+g],
- cb, 1.0f, INFINITY,
- &b, NULL, 0);
- bits += b;
- }
- dists[w*16+g] = dist - bits;
- if (prev != -1) {
- bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
- }
- tbits += bits;
- start += sce->ics.swb_sizes[g];
- prev = sce->sf_idx[w*16+g];
- }
- }
- if (tbits > destbits) {
- for (i = 0; i < 128; i++)
- if (sce->sf_idx[i] < 218 - qstep)
- sce->sf_idx[i] += qstep;
- } else {
- for (i = 0; i < 128; i++)
- if (sce->sf_idx[i] > 60 - qstep)
- sce->sf_idx[i] -= qstep;
- }
- qstep >>= 1;
- if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
- qstep = 1;
- } while (qstep);
- fflag = 0;
- minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- for (g = 0; g < sce->ics.num_swb; g++) {
- int prevsc = sce->sf_idx[w*16+g];
- if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
- if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
- sce->sf_idx[w*16+g]--;
- else //Try to make sure there is some energy in every band
- sce->sf_idx[w*16+g]-=2;
- }
- sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
- sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
- if (sce->sf_idx[w*16+g] != prevsc)
- fflag = 1;
- sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
- }
- }
- its++;
- } while (fflag && its < 10);
- }
- static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
- {
- FFPsyBand *band;
- int w, g, w2, i;
- int wlen = 1024 / sce->ics.num_windows;
- int bandwidth, cutoff;
- float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
- float *NOR34 = &s->scoefs[3*128];
- uint8_t nextband[128];
- const float lambda = s->lambda;
- const float freq_mult = avctx->sample_rate*0.5f/wlen;
- const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
- const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
- const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f);
- const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
- int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
- / ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
- * (lambda / 120.f);
- /** Keep this in sync with twoloop's cutoff selection */
- float rate_bandwidth_multiplier = 1.5f;
- int prev = -1000, prev_sf = -1;
- int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE)
- ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
- : (avctx->bit_rate / avctx->channels);
- frame_bit_rate *= 1.15f;
- if (avctx->cutoff > 0) {
- bandwidth = avctx->cutoff;
- } else {
- bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
- }
- cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
- memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
- ff_init_nextband_map(sce, nextband);
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- int wstart = w*128;
- for (g = 0; g < sce->ics.num_swb; g++) {
- int noise_sfi;
- float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
- float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
- float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
- float min_energy = -1.0f, max_energy = 0.0f;
- const int start = wstart+sce->ics.swb_offset[g];
- const float freq = (start-wstart)*freq_mult;
- const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
- if (freq < NOISE_LOW_LIMIT || (start-wstart) >= cutoff) {
- if (!sce->zeroes[w*16+g])
- prev_sf = sce->sf_idx[w*16+g];
- continue;
- }
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- sfb_energy += band->energy;
- spread = FFMIN(spread, band->spread);
- threshold += band->threshold;
- if (!w2) {
- min_energy = max_energy = band->energy;
- } else {
- min_energy = FFMIN(min_energy, band->energy);
- max_energy = FFMAX(max_energy, band->energy);
- }
- }
- /* Ramps down at ~8000Hz and loosens the dist threshold */
- dist_thresh = av_clipf(2.5f*NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias;
- /* PNS is acceptable when all of these are true:
- * 1. high spread energy (noise-like band)
- * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
- * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
- *
- * At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important)
- */
- if ((!sce->zeroes[w*16+g] && !ff_sfdelta_can_remove_band(sce, nextband, prev_sf, w*16+g)) ||
- ((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.0f/freq_boost)) || spread < spread_threshold ||
- (!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) ||
- min_energy < pns_transient_energy_r * max_energy ) {
- sce->pns_ener[w*16+g] = sfb_energy;
- if (!sce->zeroes[w*16+g])
- prev_sf = sce->sf_idx[w*16+g];
- continue;
- }
- pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread);
- noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
- noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */
- if (prev != -1000) {
- int noise_sfdiff = noise_sfi - prev + SCALE_DIFF_ZERO;
- if (noise_sfdiff < 0 || noise_sfdiff > 2*SCALE_MAX_DIFF) {
- if (!sce->zeroes[w*16+g])
- prev_sf = sce->sf_idx[w*16+g];
- continue;
- }
- }
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- float band_energy, scale, pns_senergy;
- const int start_c = (w+w2)*128+sce->ics.swb_offset[g];
- band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
- s->random_state = lcg_random(s->random_state);
- PNS[i] = s->random_state;
- }
- band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
- scale = noise_amp/sqrtf(band_energy);
- s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
- pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
- pns_energy += pns_senergy;
- s->abs_pow34(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]);
- s->abs_pow34(PNS34, PNS, sce->ics.swb_sizes[g]);
- dist1 += quantize_band_cost(s, &sce->coeffs[start_c],
- NOR34,
- sce->ics.swb_sizes[g],
- sce->sf_idx[(w+w2)*16+g],
- sce->band_alt[(w+w2)*16+g],
- lambda/band->threshold, INFINITY, NULL, NULL, 0);
- /* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */
- dist2 += band->energy/(band->spread*band->spread)*lambda*dist_thresh/band->threshold;
- }
- if (g && sce->band_type[w*16+g-1] == NOISE_BT) {
- dist2 += 5;
- } else {
- dist2 += 9;
- }
- energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
- sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy;
- if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
- sce->band_type[w*16+g] = NOISE_BT;
- sce->zeroes[w*16+g] = 0;
- prev = noise_sfi;
- } else {
- if (!sce->zeroes[w*16+g])
- prev_sf = sce->sf_idx[w*16+g];
- }
- }
- }
- }
- static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
- {
- FFPsyBand *band;
- int w, g, w2;
- int wlen = 1024 / sce->ics.num_windows;
- int bandwidth, cutoff;
- const float lambda = s->lambda;
- const float freq_mult = avctx->sample_rate*0.5f/wlen;
- const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
- const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
- int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
- / ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
- * (lambda / 120.f);
- /** Keep this in sync with twoloop's cutoff selection */
- float rate_bandwidth_multiplier = 1.5f;
- int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE)
- ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
- : (avctx->bit_rate / avctx->channels);
- frame_bit_rate *= 1.15f;
- if (avctx->cutoff > 0) {
- bandwidth = avctx->cutoff;
- } else {
- bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
- }
- cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
- memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- for (g = 0; g < sce->ics.num_swb; g++) {
- float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
- float min_energy = -1.0f, max_energy = 0.0f;
- const int start = sce->ics.swb_offset[g];
- const float freq = start*freq_mult;
- const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
- if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
- sce->can_pns[w*16+g] = 0;
- continue;
- }
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- sfb_energy += band->energy;
- spread = FFMIN(spread, band->spread);
- threshold += band->threshold;
- if (!w2) {
- min_energy = max_energy = band->energy;
- } else {
- min_energy = FFMIN(min_energy, band->energy);
- max_energy = FFMAX(max_energy, band->energy);
- }
- }
- /* PNS is acceptable when all of these are true:
- * 1. high spread energy (noise-like band)
- * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
- * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
- */
- sce->pns_ener[w*16+g] = sfb_energy;
- if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
- sce->can_pns[w*16+g] = 0;
- } else {
- sce->can_pns[w*16+g] = 1;
- }
- }
- }
- }
- static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
- {
- int start = 0, i, w, w2, g, sid_sf_boost, prev_mid, prev_side;
- uint8_t nextband0[128], nextband1[128];
- float *M = s->scoefs + 128*0, *S = s->scoefs + 128*1;
- float *L34 = s->scoefs + 128*2, *R34 = s->scoefs + 128*3;
- float *M34 = s->scoefs + 128*4, *S34 = s->scoefs + 128*5;
- const float lambda = s->lambda;
- const float mslambda = FFMIN(1.0f, lambda / 120.f);
- SingleChannelElement *sce0 = &cpe->ch[0];
- SingleChannelElement *sce1 = &cpe->ch[1];
- if (!cpe->common_window)
- return;
- /** Scout out next nonzero bands */
- ff_init_nextband_map(sce0, nextband0);
- ff_init_nextband_map(sce1, nextband1);
- prev_mid = sce0->sf_idx[0];
- prev_side = sce1->sf_idx[0];
- for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
- start = 0;
- for (g = 0; g < sce0->ics.num_swb; g++) {
- float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f;
- if (!cpe->is_mask[w*16+g])
- cpe->ms_mask[w*16+g] = 0;
- if (!sce0->zeroes[w*16+g] && !sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g]) {
- float Mmax = 0.0f, Smax = 0.0f;
- /* Must compute mid/side SF and book for the whole window group */
- for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
- for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
- M[i] = (sce0->coeffs[start+(w+w2)*128+i]
- + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
- S[i] = M[i]
- - sce1->coeffs[start+(w+w2)*128+i];
- }
- s->abs_pow34(M34, M, sce0->ics.swb_sizes[g]);
- s->abs_pow34(S34, S, sce0->ics.swb_sizes[g]);
- for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) {
- Mmax = FFMAX(Mmax, M34[i]);
- Smax = FFMAX(Smax, S34[i]);
- }
- }
- for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
- float dist1 = 0.0f, dist2 = 0.0f;
- int B0 = 0, B1 = 0;
- int minidx;
- int mididx, sididx;
- int midcb, sidcb;
- minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]);
- mididx = av_clip(minidx, 0, SCALE_MAX_POS - SCALE_DIV_512);
- sididx = av_clip(minidx - sid_sf_boost * 3, 0, SCALE_MAX_POS - SCALE_DIV_512);
- if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT
- && ( !ff_sfdelta_can_replace(sce0, nextband0, prev_mid, mididx, w*16+g)
- || !ff_sfdelta_can_replace(sce1, nextband1, prev_side, sididx, w*16+g))) {
- /* scalefactor range violation, bad stuff, will decrease quality unacceptably */
- continue;
- }
- midcb = find_min_book(Mmax, mididx);
- sidcb = find_min_book(Smax, sididx);
- /* No CB can be zero */
- midcb = FFMAX(1,midcb);
- sidcb = FFMAX(1,sidcb);
- for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
- FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
- FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
- float minthr = FFMIN(band0->threshold, band1->threshold);
- int b1,b2,b3,b4;
- for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
- M[i] = (sce0->coeffs[start+(w+w2)*128+i]
- + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
- S[i] = M[i]
- - sce1->coeffs[start+(w+w2)*128+i];
- }
- s->abs_pow34(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
- s->abs_pow34(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
- s->abs_pow34(M34, M, sce0->ics.swb_sizes[g]);
- s->abs_pow34(S34, S, sce0->ics.swb_sizes[g]);
- dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
- L34,
- sce0->ics.swb_sizes[g],
- sce0->sf_idx[w*16+g],
- sce0->band_type[w*16+g],
- lambda / band0->threshold, INFINITY, &b1, NULL, 0);
- dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
- R34,
- sce1->ics.swb_sizes[g],
- sce1->sf_idx[w*16+g],
- sce1->band_type[w*16+g],
- lambda / band1->threshold, INFINITY, &b2, NULL, 0);
- dist2 += quantize_band_cost(s, M,
- M34,
- sce0->ics.swb_sizes[g],
- mididx,
- midcb,
- lambda / minthr, INFINITY, &b3, NULL, 0);
- dist2 += quantize_band_cost(s, S,
- S34,
- sce1->ics.swb_sizes[g],
- sididx,
- sidcb,
- mslambda / (minthr * bmax), INFINITY, &b4, NULL, 0);
- B0 += b1+b2;
- B1 += b3+b4;
- dist1 -= b1+b2;
- dist2 -= b3+b4;
- }
- cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0;
- if (cpe->ms_mask[w*16+g]) {
- if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT) {
- sce0->sf_idx[w*16+g] = mididx;
- sce1->sf_idx[w*16+g] = sididx;
- sce0->band_type[w*16+g] = midcb;
- sce1->band_type[w*16+g] = sidcb;
- } else if ((sce0->band_type[w*16+g] != NOISE_BT) ^ (sce1->band_type[w*16+g] != NOISE_BT)) {
- /* ms_mask unneeded, and it confuses some decoders */
- cpe->ms_mask[w*16+g] = 0;
- }
- break;
- } else if (B1 > B0) {
- /* More boost won't fix this */
- break;
- }
- }
- }
- if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT)
- prev_mid = sce0->sf_idx[w*16+g];
- if (!sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
- prev_side = sce1->sf_idx[w*16+g];
- start += sce0->ics.swb_sizes[g];
- }
- }
- }
- const AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
- [AAC_CODER_ANMR] = {
- search_for_quantizers_anmr,
- encode_window_bands_info,
- quantize_and_encode_band,
- ff_aac_encode_tns_info,
- ff_aac_encode_ltp_info,
- ff_aac_encode_main_pred,
- ff_aac_adjust_common_pred,
- ff_aac_adjust_common_ltp,
- ff_aac_apply_main_pred,
- ff_aac_apply_tns,
- ff_aac_update_ltp,
- ff_aac_ltp_insert_new_frame,
- set_special_band_scalefactors,
- search_for_pns,
- mark_pns,
- ff_aac_search_for_tns,
- ff_aac_search_for_ltp,
- search_for_ms,
- ff_aac_search_for_is,
- ff_aac_search_for_pred,
- },
- [AAC_CODER_TWOLOOP] = {
- search_for_quantizers_twoloop,
- codebook_trellis_rate,
- quantize_and_encode_band,
- ff_aac_encode_tns_info,
- ff_aac_encode_ltp_info,
- ff_aac_encode_main_pred,
- ff_aac_adjust_common_pred,
- ff_aac_adjust_common_ltp,
- ff_aac_apply_main_pred,
- ff_aac_apply_tns,
- ff_aac_update_ltp,
- ff_aac_ltp_insert_new_frame,
- set_special_band_scalefactors,
- search_for_pns,
- mark_pns,
- ff_aac_search_for_tns,
- ff_aac_search_for_ltp,
- search_for_ms,
- ff_aac_search_for_is,
- ff_aac_search_for_pred,
- },
- [AAC_CODER_FAST] = {
- search_for_quantizers_fast,
- codebook_trellis_rate,
- quantize_and_encode_band,
- ff_aac_encode_tns_info,
- ff_aac_encode_ltp_info,
- ff_aac_encode_main_pred,
- ff_aac_adjust_common_pred,
- ff_aac_adjust_common_ltp,
- ff_aac_apply_main_pred,
- ff_aac_apply_tns,
- ff_aac_update_ltp,
- ff_aac_ltp_insert_new_frame,
- set_special_band_scalefactors,
- search_for_pns,
- mark_pns,
- ff_aac_search_for_tns,
- ff_aac_search_for_ltp,
- search_for_ms,
- ff_aac_search_for_is,
- ff_aac_search_for_pred,
- },
- };
|