12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025 |
- /*
- * AAC encoder psychoacoustic model
- * Copyright (C) 2008 Konstantin Shishkov
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- /**
- * @file
- * AAC encoder psychoacoustic model
- */
- #include "libavutil/attributes.h"
- #include "libavutil/ffmath.h"
- #include "avcodec.h"
- #include "aactab.h"
- #include "psymodel.h"
- /***********************************
- * TODOs:
- * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
- * control quality for quality-based output
- **********************************/
- /**
- * constants for 3GPP AAC psychoacoustic model
- * @{
- */
- #define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark)
- #define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark)
- /* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
- #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
- /* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
- #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
- /* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
- #define PSY_3GPP_EN_SPREAD_HI_S 1.5f
- /* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
- #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
- /* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
- #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
- #define PSY_3GPP_RPEMIN 0.01f
- #define PSY_3GPP_RPELEV 2.0f
- #define PSY_3GPP_C1 3.0f /* log2(8) */
- #define PSY_3GPP_C2 1.3219281f /* log2(2.5) */
- #define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */
- #define PSY_SNR_1DB 7.9432821e-1f /* -1dB */
- #define PSY_SNR_25DB 3.1622776e-3f /* -25dB */
- #define PSY_3GPP_SAVE_SLOPE_L -0.46666667f
- #define PSY_3GPP_SAVE_SLOPE_S -0.36363637f
- #define PSY_3GPP_SAVE_ADD_L -0.84285712f
- #define PSY_3GPP_SAVE_ADD_S -0.75f
- #define PSY_3GPP_SPEND_SLOPE_L 0.66666669f
- #define PSY_3GPP_SPEND_SLOPE_S 0.81818181f
- #define PSY_3GPP_SPEND_ADD_L -0.35f
- #define PSY_3GPP_SPEND_ADD_S -0.26111111f
- #define PSY_3GPP_CLIP_LO_L 0.2f
- #define PSY_3GPP_CLIP_LO_S 0.2f
- #define PSY_3GPP_CLIP_HI_L 0.95f
- #define PSY_3GPP_CLIP_HI_S 0.75f
- #define PSY_3GPP_AH_THR_LONG 0.5f
- #define PSY_3GPP_AH_THR_SHORT 0.63f
- #define PSY_PE_FORGET_SLOPE 511
- enum {
- PSY_3GPP_AH_NONE,
- PSY_3GPP_AH_INACTIVE,
- PSY_3GPP_AH_ACTIVE
- };
- #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
- #define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f)
- /* LAME psy model constants */
- #define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order
- #define AAC_BLOCK_SIZE_LONG 1024 ///< long block size
- #define AAC_BLOCK_SIZE_SHORT 128 ///< short block size
- #define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence
- #define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block
- /**
- * @}
- */
- /**
- * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
- */
- typedef struct AacPsyBand{
- float energy; ///< band energy
- float thr; ///< energy threshold
- float thr_quiet; ///< threshold in quiet
- float nz_lines; ///< number of non-zero spectral lines
- float active_lines; ///< number of active spectral lines
- float pe; ///< perceptual entropy
- float pe_const; ///< constant part of the PE calculation
- float norm_fac; ///< normalization factor for linearization
- int avoid_holes; ///< hole avoidance flag
- }AacPsyBand;
- /**
- * single/pair channel context for psychoacoustic model
- */
- typedef struct AacPsyChannel{
- AacPsyBand band[128]; ///< bands information
- AacPsyBand prev_band[128]; ///< bands information from the previous frame
- float win_energy; ///< sliding average of channel energy
- float iir_state[2]; ///< hi-pass IIR filter state
- uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
- enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
- /* LAME psy model specific members */
- float attack_threshold; ///< attack threshold for this channel
- float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS];
- int prev_attack; ///< attack value for the last short block in the previous sequence
- }AacPsyChannel;
- /**
- * psychoacoustic model frame type-dependent coefficients
- */
- typedef struct AacPsyCoeffs{
- float ath; ///< absolute threshold of hearing per bands
- float barks; ///< Bark value for each spectral band in long frame
- float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame
- float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame
- float min_snr; ///< minimal SNR
- }AacPsyCoeffs;
- /**
- * 3GPP TS26.403-inspired psychoacoustic model specific data
- */
- typedef struct AacPsyContext{
- int chan_bitrate; ///< bitrate per channel
- int frame_bits; ///< average bits per frame
- int fill_level; ///< bit reservoir fill level
- struct {
- float min; ///< minimum allowed PE for bit factor calculation
- float max; ///< maximum allowed PE for bit factor calculation
- float previous; ///< allowed PE of the previous frame
- float correction; ///< PE correction factor
- } pe;
- AacPsyCoeffs psy_coef[2][64];
- AacPsyChannel *ch;
- float global_quality; ///< normalized global quality taken from avctx
- }AacPsyContext;
- /**
- * LAME psy model preset struct
- */
- typedef struct PsyLamePreset {
- int quality; ///< Quality to map the rest of the vaules to.
- /* This is overloaded to be both kbps per channel in ABR mode, and
- * requested quality in constant quality mode.
- */
- float st_lrm; ///< short threshold for L, R, and M channels
- } PsyLamePreset;
- /**
- * LAME psy model preset table for ABR
- */
- static const PsyLamePreset psy_abr_map[] = {
- /* TODO: Tuning. These were taken from LAME. */
- /* kbps/ch st_lrm */
- { 8, 6.60},
- { 16, 6.60},
- { 24, 6.60},
- { 32, 6.60},
- { 40, 6.60},
- { 48, 6.60},
- { 56, 6.60},
- { 64, 6.40},
- { 80, 6.00},
- { 96, 5.60},
- {112, 5.20},
- {128, 5.20},
- {160, 5.20}
- };
- /**
- * LAME psy model preset table for constant quality
- */
- static const PsyLamePreset psy_vbr_map[] = {
- /* vbr_q st_lrm */
- { 0, 4.20},
- { 1, 4.20},
- { 2, 4.20},
- { 3, 4.20},
- { 4, 4.20},
- { 5, 4.20},
- { 6, 4.20},
- { 7, 4.20},
- { 8, 4.20},
- { 9, 4.20},
- {10, 4.20}
- };
- /**
- * LAME psy model FIR coefficient table
- */
- static const float psy_fir_coeffs[] = {
- -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
- -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2,
- -5.52212e-17 * 2, -0.313819 * 2
- };
- #if ARCH_MIPS
- # include "mips/aacpsy_mips.h"
- #endif /* ARCH_MIPS */
- /**
- * Calculate the ABR attack threshold from the above LAME psymodel table.
- */
- static float lame_calc_attack_threshold(int bitrate)
- {
- /* Assume max bitrate to start with */
- int lower_range = 12, upper_range = 12;
- int lower_range_kbps = psy_abr_map[12].quality;
- int upper_range_kbps = psy_abr_map[12].quality;
- int i;
- /* Determine which bitrates the value specified falls between.
- * If the loop ends without breaking our above assumption of 320kbps was correct.
- */
- for (i = 1; i < 13; i++) {
- if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
- upper_range = i;
- upper_range_kbps = psy_abr_map[i ].quality;
- lower_range = i - 1;
- lower_range_kbps = psy_abr_map[i - 1].quality;
- break; /* Upper range found */
- }
- }
- /* Determine which range the value specified is closer to */
- if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
- return psy_abr_map[lower_range].st_lrm;
- return psy_abr_map[upper_range].st_lrm;
- }
- /**
- * LAME psy model specific initialization
- */
- static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx)
- {
- int i, j;
- for (i = 0; i < avctx->channels; i++) {
- AacPsyChannel *pch = &ctx->ch[i];
- if (avctx->flags & AV_CODEC_FLAG_QSCALE)
- pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm;
- else
- pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000);
- for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++)
- pch->prev_energy_subshort[j] = 10.0f;
- }
- }
- /**
- * Calculate Bark value for given line.
- */
- static av_cold float calc_bark(float f)
- {
- return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
- }
- #define ATH_ADD 4
- /**
- * Calculate ATH value for given frequency.
- * Borrowed from Lame.
- */
- static av_cold float ath(float f, float add)
- {
- f /= 1000.0f;
- return 3.64 * pow(f, -0.8)
- - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4))
- + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7))
- + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
- }
- static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
- AacPsyContext *pctx;
- float bark;
- int i, j, g, start;
- float prev, minscale, minath, minsnr, pe_min;
- int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->channels);
- const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
- const float num_bark = calc_bark((float)bandwidth);
- ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
- if (!ctx->model_priv_data)
- return AVERROR(ENOMEM);
- pctx = ctx->model_priv_data;
- pctx->global_quality = (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) * 0.01f;
- if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) {
- /* Use the target average bitrate to compute spread parameters */
- chan_bitrate = (int)(chan_bitrate / 120.0 * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120));
- }
- pctx->chan_bitrate = chan_bitrate;
- pctx->frame_bits = FFMIN(2560, chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate);
- pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
- pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
- ctx->bitres.size = 6144 - pctx->frame_bits;
- ctx->bitres.size -= ctx->bitres.size % 8;
- pctx->fill_level = ctx->bitres.size;
- minath = ath(3410 - 0.733 * ATH_ADD, ATH_ADD);
- for (j = 0; j < 2; j++) {
- AacPsyCoeffs *coeffs = pctx->psy_coef[j];
- const uint8_t *band_sizes = ctx->bands[j];
- float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
- float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate;
- /* reference encoder uses 2.4% here instead of 60% like the spec says */
- float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark;
- float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L;
- /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
- float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1;
- i = 0;
- prev = 0.0;
- for (g = 0; g < ctx->num_bands[j]; g++) {
- i += band_sizes[g];
- bark = calc_bark((i-1) * line_to_frequency);
- coeffs[g].barks = (bark + prev) / 2.0;
- prev = bark;
- }
- for (g = 0; g < ctx->num_bands[j] - 1; g++) {
- AacPsyCoeffs *coeff = &coeffs[g];
- float bark_width = coeffs[g+1].barks - coeffs->barks;
- coeff->spread_low[0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_LOW);
- coeff->spread_hi [0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_HI);
- coeff->spread_low[1] = ff_exp10(-bark_width * en_spread_low);
- coeff->spread_hi [1] = ff_exp10(-bark_width * en_spread_hi);
- pe_min = bark_pe * bark_width;
- minsnr = exp2(pe_min / band_sizes[g]) - 1.5f;
- coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB);
- }
- start = 0;
- for (g = 0; g < ctx->num_bands[j]; g++) {
- minscale = ath(start * line_to_frequency, ATH_ADD);
- for (i = 1; i < band_sizes[g]; i++)
- minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD));
- coeffs[g].ath = minscale - minath;
- start += band_sizes[g];
- }
- }
- pctx->ch = av_mallocz_array(ctx->avctx->channels, sizeof(AacPsyChannel));
- if (!pctx->ch) {
- av_freep(&ctx->model_priv_data);
- return AVERROR(ENOMEM);
- }
- lame_window_init(pctx, ctx->avctx);
- return 0;
- }
- /**
- * IIR filter used in block switching decision
- */
- static float iir_filter(int in, float state[2])
- {
- float ret;
- ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
- state[0] = in;
- state[1] = ret;
- return ret;
- }
- /**
- * window grouping information stored as bits (0 - new group, 1 - group continues)
- */
- static const uint8_t window_grouping[9] = {
- 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
- };
- /**
- * Tell encoder which window types to use.
- * @see 3GPP TS26.403 5.4.1 "Blockswitching"
- */
- static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
- const int16_t *audio,
- const int16_t *la,
- int channel, int prev_type)
- {
- int i, j;
- int br = ((AacPsyContext*)ctx->model_priv_data)->chan_bitrate;
- int attack_ratio = br <= 16000 ? 18 : 10;
- AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
- AacPsyChannel *pch = &pctx->ch[channel];
- uint8_t grouping = 0;
- int next_type = pch->next_window_seq;
- FFPsyWindowInfo wi = { { 0 } };
- if (la) {
- float s[8], v;
- int switch_to_eight = 0;
- float sum = 0.0, sum2 = 0.0;
- int attack_n = 0;
- int stay_short = 0;
- for (i = 0; i < 8; i++) {
- for (j = 0; j < 128; j++) {
- v = iir_filter(la[i*128+j], pch->iir_state);
- sum += v*v;
- }
- s[i] = sum;
- sum2 += sum;
- }
- for (i = 0; i < 8; i++) {
- if (s[i] > pch->win_energy * attack_ratio) {
- attack_n = i + 1;
- switch_to_eight = 1;
- break;
- }
- }
- pch->win_energy = pch->win_energy*7/8 + sum2/64;
- wi.window_type[1] = prev_type;
- switch (prev_type) {
- case ONLY_LONG_SEQUENCE:
- wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
- next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
- break;
- case LONG_START_SEQUENCE:
- wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
- grouping = pch->next_grouping;
- next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
- break;
- case LONG_STOP_SEQUENCE:
- wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
- next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
- break;
- case EIGHT_SHORT_SEQUENCE:
- stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight;
- wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
- grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0;
- next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
- break;
- }
- pch->next_grouping = window_grouping[attack_n];
- pch->next_window_seq = next_type;
- } else {
- for (i = 0; i < 3; i++)
- wi.window_type[i] = prev_type;
- grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
- }
- wi.window_shape = 1;
- if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
- wi.num_windows = 1;
- wi.grouping[0] = 1;
- } else {
- int lastgrp = 0;
- wi.num_windows = 8;
- for (i = 0; i < 8; i++) {
- if (!((grouping >> i) & 1))
- lastgrp = i;
- wi.grouping[lastgrp]++;
- }
- }
- return wi;
- }
- /* 5.6.1.2 "Calculation of Bit Demand" */
- static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size,
- int short_window)
- {
- const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L;
- const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L;
- const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L;
- const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L;
- const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L;
- const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L;
- float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe;
- ctx->fill_level += ctx->frame_bits - bits;
- ctx->fill_level = av_clip(ctx->fill_level, 0, size);
- fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high);
- clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max);
- bit_save = (fill_level + bitsave_add) * bitsave_slope;
- assert(bit_save <= 0.3f && bit_save >= -0.05000001f);
- bit_spend = (fill_level + bitspend_add) * bitspend_slope;
- assert(bit_spend <= 0.5f && bit_spend >= -0.1f);
- /* The bit factor graph in the spec is obviously incorrect.
- * bit_spend + ((bit_spend - bit_spend))...
- * The reference encoder subtracts everything from 1, but also seems incorrect.
- * 1 - bit_save + ((bit_spend + bit_save))...
- * Hopefully below is correct.
- */
- bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min);
- /* NOTE: The reference encoder attempts to center pe max/min around the current pe.
- * Here we do that by slowly forgetting pe.min when pe stays in a range that makes
- * it unlikely (ie: above the mean)
- */
- ctx->pe.max = FFMAX(pe, ctx->pe.max);
- forgetful_min_pe = ((ctx->pe.min * PSY_PE_FORGET_SLOPE)
- + FFMAX(ctx->pe.min, pe * (pe / ctx->pe.max))) / (PSY_PE_FORGET_SLOPE + 1);
- ctx->pe.min = FFMIN(pe, forgetful_min_pe);
- /* NOTE: allocate a minimum of 1/8th average frame bits, to avoid
- * reservoir starvation from producing zero-bit frames
- */
- return FFMIN(
- ctx->frame_bits * bit_factor,
- FFMAX(ctx->frame_bits + size - bits, ctx->frame_bits / 8));
- }
- static float calc_pe_3gpp(AacPsyBand *band)
- {
- float pe, a;
- band->pe = 0.0f;
- band->pe_const = 0.0f;
- band->active_lines = 0.0f;
- if (band->energy > band->thr) {
- a = log2f(band->energy);
- pe = a - log2f(band->thr);
- band->active_lines = band->nz_lines;
- if (pe < PSY_3GPP_C1) {
- pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2;
- a = a * PSY_3GPP_C3 + PSY_3GPP_C2;
- band->active_lines *= PSY_3GPP_C3;
- }
- band->pe = pe * band->nz_lines;
- band->pe_const = a * band->nz_lines;
- }
- return band->pe;
- }
- static float calc_reduction_3gpp(float a, float desired_pe, float pe,
- float active_lines)
- {
- float thr_avg, reduction;
- if(active_lines == 0.0)
- return 0;
- thr_avg = exp2f((a - pe) / (4.0f * active_lines));
- reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg;
- return FFMAX(reduction, 0.0f);
- }
- static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr,
- float reduction)
- {
- float thr = band->thr;
- if (band->energy > thr) {
- thr = sqrtf(thr);
- thr = sqrtf(thr) + reduction;
- thr *= thr;
- thr *= thr;
- /* This deviates from the 3GPP spec to match the reference encoder.
- * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
- * that have hole avoidance on (active or inactive). It always reduces the
- * threshold of bands with hole avoidance off.
- */
- if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) {
- thr = FFMAX(band->thr, band->energy * min_snr);
- band->avoid_holes = PSY_3GPP_AH_ACTIVE;
- }
- }
- return thr;
- }
- #ifndef calc_thr_3gpp
- static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch,
- const uint8_t *band_sizes, const float *coefs, const int cutoff)
- {
- int i, w, g;
- int start = 0, wstart = 0;
- for (w = 0; w < wi->num_windows*16; w += 16) {
- wstart = 0;
- for (g = 0; g < num_bands; g++) {
- AacPsyBand *band = &pch->band[w+g];
- float form_factor = 0.0f;
- float Temp;
- band->energy = 0.0f;
- if (wstart < cutoff) {
- for (i = 0; i < band_sizes[g]; i++) {
- band->energy += coefs[start+i] * coefs[start+i];
- form_factor += sqrtf(fabs(coefs[start+i]));
- }
- }
- Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0;
- band->thr = band->energy * 0.001258925f;
- band->nz_lines = form_factor * sqrtf(Temp);
- start += band_sizes[g];
- wstart += band_sizes[g];
- }
- }
- }
- #endif /* calc_thr_3gpp */
- #ifndef psy_hp_filter
- static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs)
- {
- int i, j;
- for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) {
- float sum1, sum2;
- sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2];
- sum2 = 0.0;
- for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) {
- sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]);
- sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]);
- }
- /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768.
- * Tuning this for normalized floats would be difficult. */
- hpfsmpl[i] = (sum1 + sum2) * 32768.0f;
- }
- }
- #endif /* psy_hp_filter */
- /**
- * Calculate band thresholds as suggested in 3GPP TS26.403
- */
- static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel,
- const float *coefs, const FFPsyWindowInfo *wi)
- {
- AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
- AacPsyChannel *pch = &pctx->ch[channel];
- int i, w, g;
- float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0};
- float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
- float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f);
- const int num_bands = ctx->num_bands[wi->num_windows == 8];
- const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8];
- AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8];
- const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG;
- const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
- const int cutoff = bandwidth * 2048 / wi->num_windows / ctx->avctx->sample_rate;
- //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
- calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff);
- //modify thresholds and energies - spread, threshold in quiet, pre-echo control
- for (w = 0; w < wi->num_windows*16; w += 16) {
- AacPsyBand *bands = &pch->band[w];
- /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */
- spread_en[0] = bands[0].energy;
- for (g = 1; g < num_bands; g++) {
- bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]);
- spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]);
- }
- for (g = num_bands - 2; g >= 0; g--) {
- bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]);
- spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]);
- }
- //5.4.2.4 "Threshold in quiet"
- for (g = 0; g < num_bands; g++) {
- AacPsyBand *band = &bands[g];
- band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath);
- //5.4.2.5 "Pre-echo control"
- if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (!w && wi->window_type[1] == LONG_START_SEQUENCE)))
- band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr,
- PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
- /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */
- pe += calc_pe_3gpp(band);
- a += band->pe_const;
- active_lines += band->active_lines;
- /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
- if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f)
- band->avoid_holes = PSY_3GPP_AH_NONE;
- else
- band->avoid_holes = PSY_3GPP_AH_INACTIVE;
- }
- }
- /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
- ctx->ch[channel].entropy = pe;
- if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) {
- /* (2.5 * 120) achieves almost transparent rate, and we want to give
- * ample room downwards, so we make that equivalent to QSCALE=2.4
- */
- desired_pe = pe * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) / (2 * 2.5f * 120.0f);
- desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe));
- desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping
- /* PE slope smoothing */
- if (ctx->bitres.bits > 0) {
- desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe));
- desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping
- }
- pctx->pe.max = FFMAX(pe, pctx->pe.max);
- pctx->pe.min = FFMIN(pe, pctx->pe.min);
- } else {
- desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
- desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits);
- /* NOTE: PE correction is kept simple. During initial testing it had very
- * little effect on the final bitrate. Probably a good idea to come
- * back and do more testing later.
- */
- if (ctx->bitres.bits > 0)
- desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits),
- 0.85f, 1.15f);
- }
- pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits);
- ctx->bitres.alloc = desired_bits;
- if (desired_pe < pe) {
- /* 5.6.1.3.4 "First Estimation of the reduction value" */
- for (w = 0; w < wi->num_windows*16; w += 16) {
- reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines);
- pe = 0.0f;
- a = 0.0f;
- active_lines = 0.0f;
- for (g = 0; g < num_bands; g++) {
- AacPsyBand *band = &pch->band[w+g];
- band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
- /* recalculate PE */
- pe += calc_pe_3gpp(band);
- a += band->pe_const;
- active_lines += band->active_lines;
- }
- }
- /* 5.6.1.3.5 "Second Estimation of the reduction value" */
- for (i = 0; i < 2; i++) {
- float pe_no_ah = 0.0f, desired_pe_no_ah;
- active_lines = a = 0.0f;
- for (w = 0; w < wi->num_windows*16; w += 16) {
- for (g = 0; g < num_bands; g++) {
- AacPsyBand *band = &pch->band[w+g];
- if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) {
- pe_no_ah += band->pe;
- a += band->pe_const;
- active_lines += band->active_lines;
- }
- }
- }
- desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f);
- if (active_lines > 0.0f)
- reduction = calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines);
- pe = 0.0f;
- for (w = 0; w < wi->num_windows*16; w += 16) {
- for (g = 0; g < num_bands; g++) {
- AacPsyBand *band = &pch->band[w+g];
- if (active_lines > 0.0f)
- band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
- pe += calc_pe_3gpp(band);
- if (band->thr > 0.0f)
- band->norm_fac = band->active_lines / band->thr;
- else
- band->norm_fac = 0.0f;
- norm_fac += band->norm_fac;
- }
- }
- delta_pe = desired_pe - pe;
- if (fabs(delta_pe) > 0.05f * desired_pe)
- break;
- }
- if (pe < 1.15f * desired_pe) {
- /* 6.6.1.3.6 "Final threshold modification by linearization" */
- norm_fac = 1.0f / norm_fac;
- for (w = 0; w < wi->num_windows*16; w += 16) {
- for (g = 0; g < num_bands; g++) {
- AacPsyBand *band = &pch->band[w+g];
- if (band->active_lines > 0.5f) {
- float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe;
- float thr = band->thr;
- thr *= exp2f(delta_sfb_pe / band->active_lines);
- if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE)
- thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy);
- band->thr = thr;
- }
- }
- }
- } else {
- /* 5.6.1.3.7 "Further perceptual entropy reduction" */
- g = num_bands;
- while (pe > desired_pe && g--) {
- for (w = 0; w < wi->num_windows*16; w+= 16) {
- AacPsyBand *band = &pch->band[w+g];
- if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) {
- coeffs[g].min_snr = PSY_SNR_1DB;
- band->thr = band->energy * PSY_SNR_1DB;
- pe += band->active_lines * 1.5f - band->pe;
- }
- }
- }
- /* TODO: allow more holes (unused without mid/side) */
- }
- }
- for (w = 0; w < wi->num_windows*16; w += 16) {
- for (g = 0; g < num_bands; g++) {
- AacPsyBand *band = &pch->band[w+g];
- FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g];
- psy_band->threshold = band->thr;
- psy_band->energy = band->energy;
- psy_band->spread = band->active_lines * 2.0f / band_sizes[g];
- psy_band->bits = PSY_3GPP_PE_TO_BITS(band->pe);
- }
- }
- memcpy(pch->prev_band, pch->band, sizeof(pch->band));
- }
- static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
- const float **coeffs, const FFPsyWindowInfo *wi)
- {
- int ch;
- FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel);
- for (ch = 0; ch < group->num_ch; ch++)
- psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]);
- }
- static av_cold void psy_3gpp_end(FFPsyContext *apc)
- {
- AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data;
- av_freep(&pctx->ch);
- av_freep(&apc->model_priv_data);
- }
- static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
- {
- int blocktype = ONLY_LONG_SEQUENCE;
- if (uselongblock) {
- if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE)
- blocktype = LONG_STOP_SEQUENCE;
- } else {
- blocktype = EIGHT_SHORT_SEQUENCE;
- if (ctx->next_window_seq == ONLY_LONG_SEQUENCE)
- ctx->next_window_seq = LONG_START_SEQUENCE;
- if (ctx->next_window_seq == LONG_STOP_SEQUENCE)
- ctx->next_window_seq = EIGHT_SHORT_SEQUENCE;
- }
- wi->window_type[0] = ctx->next_window_seq;
- ctx->next_window_seq = blocktype;
- }
- static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio,
- const float *la, int channel, int prev_type)
- {
- AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
- AacPsyChannel *pch = &pctx->ch[channel];
- int grouping = 0;
- int uselongblock = 1;
- int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
- int i;
- FFPsyWindowInfo wi = { { 0 } };
- if (la) {
- float hpfsmpl[AAC_BLOCK_SIZE_LONG];
- const float *pf = hpfsmpl;
- float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
- float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
- float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
- const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN);
- int att_sum = 0;
- /* LAME comment: apply high pass filter of fs/4 */
- psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs);
- /* Calculate the energies of each sub-shortblock */
- for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) {
- energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
- assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0);
- attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)];
- energy_short[0] += energy_subshort[i];
- }
- for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) {
- const float *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS);
- float p = 1.0f;
- for (; pf < pfe; pf++)
- p = FFMAX(p, fabsf(*pf));
- pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p;
- energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p;
- /* NOTE: The indexes below are [i + 3 - 2] in the LAME source.
- * Obviously the 3 and 2 have some significance, or this would be just [i + 1]
- * (which is what we use here). What the 3 stands for is ambiguous, as it is both
- * number of short blocks, and the number of sub-short blocks.
- * It seems that LAME is comparing each sub-block to sub-block + 1 in the
- * previous block.
- */
- if (p > energy_subshort[i + 1])
- p = p / energy_subshort[i + 1];
- else if (energy_subshort[i + 1] > p * 10.0f)
- p = energy_subshort[i + 1] / (p * 10.0f);
- else
- p = 0.0;
- attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p;
- }
- /* compare energy between sub-short blocks */
- for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++)
- if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
- if (attack_intensity[i] > pch->attack_threshold)
- attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1;
- /* should have energy change between short blocks, in order to avoid periodic signals */
- /* Good samples to show the effect are Trumpet test songs */
- /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
- /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
- for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) {
- const float u = energy_short[i - 1];
- const float v = energy_short[i];
- const float m = FFMAX(u, v);
- if (m < 40000) { /* (2) */
- if (u < 1.7f * v && v < 1.7f * u) { /* (1) */
- if (i == 1 && attacks[0] < attacks[i])
- attacks[0] = 0;
- attacks[i] = 0;
- }
- }
- att_sum += attacks[i];
- }
- if (attacks[0] <= pch->prev_attack)
- attacks[0] = 0;
- att_sum += attacks[0];
- /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */
- if (pch->prev_attack == 3 || att_sum) {
- uselongblock = 0;
- for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++)
- if (attacks[i] && attacks[i-1])
- attacks[i] = 0;
- }
- } else {
- /* We have no lookahead info, so just use same type as the previous sequence. */
- uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE);
- }
- lame_apply_block_type(pch, &wi, uselongblock);
- wi.window_type[1] = prev_type;
- if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
- wi.num_windows = 1;
- wi.grouping[0] = 1;
- if (wi.window_type[0] == LONG_START_SEQUENCE)
- wi.window_shape = 0;
- else
- wi.window_shape = 1;
- } else {
- int lastgrp = 0;
- wi.num_windows = 8;
- wi.window_shape = 0;
- for (i = 0; i < 8; i++) {
- if (!((pch->next_grouping >> i) & 1))
- lastgrp = i;
- wi.grouping[lastgrp]++;
- }
- }
- /* Determine grouping, based on the location of the first attack, and save for
- * the next frame.
- * FIXME: Move this to analysis.
- * TODO: Tune groupings depending on attack location
- * TODO: Handle more than one attack in a group
- */
- for (i = 0; i < 9; i++) {
- if (attacks[i]) {
- grouping = i;
- break;
- }
- }
- pch->next_grouping = window_grouping[grouping];
- pch->prev_attack = attacks[8];
- return wi;
- }
- const FFPsyModel ff_aac_psy_model =
- {
- .name = "3GPP TS 26.403-inspired model",
- .init = psy_3gpp_init,
- .window = psy_lame_window,
- .analyze = psy_3gpp_analyze,
- .end = psy_3gpp_end,
- };
|