123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- /*
- * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- /*
- * NB: These functions have been upgraded - the previous prototypes are in
- * dh_depr.c as wrappers to these ones. - Geoff
- */
- #include <stdio.h>
- #include "internal/cryptlib.h"
- #include <openssl/bn.h>
- #include "dh_local.h"
- static int dh_builtin_genparams(DH *ret, int prime_len, int generator,
- BN_GENCB *cb);
- int DH_generate_parameters_ex(DH *ret, int prime_len, int generator,
- BN_GENCB *cb)
- {
- if (ret->meth->generate_params)
- return ret->meth->generate_params(ret, prime_len, generator, cb);
- return dh_builtin_genparams(ret, prime_len, generator, cb);
- }
- /*-
- * We generate DH parameters as follows
- * find a prime p which is prime_len bits long,
- * where q=(p-1)/2 is also prime.
- * In the following we assume that g is not 0, 1 or p-1, since it
- * would generate only trivial subgroups.
- * For this case, g is a generator of the order-q subgroup if
- * g^q mod p == 1.
- * Or in terms of the Legendre symbol: (g/p) == 1.
- *
- * Having said all that,
- * there is another special case method for the generators 2, 3 and 5.
- * Using the quadratic reciprocity law it is possible to solve
- * (g/p) == 1 for the special values 2, 3, 5:
- * (2/p) == 1 if p mod 8 == 1 or 7.
- * (3/p) == 1 if p mod 12 == 1 or 11.
- * (5/p) == 1 if p mod 5 == 1 or 4.
- * See for instance: https://en.wikipedia.org/wiki/Legendre_symbol
- *
- * Since all safe primes > 7 must satisfy p mod 12 == 11
- * and all safe primes > 11 must satisfy p mod 5 != 1
- * we can further improve the condition for g = 2, 3 and 5:
- * for 2, p mod 24 == 23
- * for 3, p mod 12 == 11
- * for 5, p mod 60 == 59
- *
- * However for compatibility with previous versions we use:
- * for 2, p mod 24 == 11
- * for 5, p mod 60 == 23
- */
- static int dh_builtin_genparams(DH *ret, int prime_len, int generator,
- BN_GENCB *cb)
- {
- BIGNUM *t1, *t2;
- int g, ok = -1;
- BN_CTX *ctx = NULL;
- ctx = BN_CTX_new();
- if (ctx == NULL)
- goto err;
- BN_CTX_start(ctx);
- t1 = BN_CTX_get(ctx);
- t2 = BN_CTX_get(ctx);
- if (t2 == NULL)
- goto err;
- /* Make sure 'ret' has the necessary elements */
- if (!ret->p && ((ret->p = BN_new()) == NULL))
- goto err;
- if (!ret->g && ((ret->g = BN_new()) == NULL))
- goto err;
- if (generator <= 1) {
- DHerr(DH_F_DH_BUILTIN_GENPARAMS, DH_R_BAD_GENERATOR);
- goto err;
- }
- if (generator == DH_GENERATOR_2) {
- if (!BN_set_word(t1, 24))
- goto err;
- if (!BN_set_word(t2, 11))
- goto err;
- g = 2;
- } else if (generator == DH_GENERATOR_5) {
- if (!BN_set_word(t1, 60))
- goto err;
- if (!BN_set_word(t2, 23))
- goto err;
- g = 5;
- } else {
- /*
- * in the general case, don't worry if 'generator' is a generator or
- * not: since we are using safe primes, it will generate either an
- * order-q or an order-2q group, which both is OK
- */
- if (!BN_set_word(t1, 12))
- goto err;
- if (!BN_set_word(t2, 11))
- goto err;
- g = generator;
- }
- if (!BN_generate_prime_ex(ret->p, prime_len, 1, t1, t2, cb))
- goto err;
- if (!BN_GENCB_call(cb, 3, 0))
- goto err;
- if (!BN_set_word(ret->g, g))
- goto err;
- ok = 1;
- err:
- if (ok == -1) {
- DHerr(DH_F_DH_BUILTIN_GENPARAMS, ERR_R_BN_LIB);
- ok = 0;
- }
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- return ok;
- }
|