123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976 |
- /*
- * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <string.h>
- #include <openssl/err.h>
- #include "internal/cryptlib.h"
- #include "crypto/bn.h"
- #include "ec_local.h"
- #include "internal/refcount.h"
- /*
- * This file implements the wNAF-based interleaving multi-exponentiation method
- * Formerly at:
- * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
- * You might now find it here:
- * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
- * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
- * For multiplication with precomputation, we use wNAF splitting, formerly at:
- * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
- */
- /* structure for precomputed multiples of the generator */
- struct ec_pre_comp_st {
- const EC_GROUP *group; /* parent EC_GROUP object */
- size_t blocksize; /* block size for wNAF splitting */
- size_t numblocks; /* max. number of blocks for which we have
- * precomputation */
- size_t w; /* window size */
- EC_POINT **points; /* array with pre-calculated multiples of
- * generator: 'num' pointers to EC_POINT
- * objects followed by a NULL */
- size_t num; /* numblocks * 2^(w-1) */
- CRYPTO_REF_COUNT references;
- CRYPTO_RWLOCK *lock;
- };
- static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
- {
- EC_PRE_COMP *ret = NULL;
- if (!group)
- return NULL;
- ret = OPENSSL_zalloc(sizeof(*ret));
- if (ret == NULL) {
- ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
- return ret;
- }
- ret->group = group;
- ret->blocksize = 8; /* default */
- ret->w = 4; /* default */
- ret->references = 1;
- ret->lock = CRYPTO_THREAD_lock_new();
- if (ret->lock == NULL) {
- ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
- OPENSSL_free(ret);
- return NULL;
- }
- return ret;
- }
- EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
- {
- int i;
- if (pre != NULL)
- CRYPTO_UP_REF(&pre->references, &i, pre->lock);
- return pre;
- }
- void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
- {
- int i;
- if (pre == NULL)
- return;
- CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
- REF_PRINT_COUNT("EC_ec", pre);
- if (i > 0)
- return;
- REF_ASSERT_ISNT(i < 0);
- if (pre->points != NULL) {
- EC_POINT **pts;
- for (pts = pre->points; *pts != NULL; pts++)
- EC_POINT_free(*pts);
- OPENSSL_free(pre->points);
- }
- CRYPTO_THREAD_lock_free(pre->lock);
- OPENSSL_free(pre);
- }
- #define EC_POINT_BN_set_flags(P, flags) do { \
- BN_set_flags((P)->X, (flags)); \
- BN_set_flags((P)->Y, (flags)); \
- BN_set_flags((P)->Z, (flags)); \
- } while(0)
- /*-
- * This functions computes a single point multiplication over the EC group,
- * using, at a high level, a Montgomery ladder with conditional swaps, with
- * various timing attack defenses.
- *
- * It performs either a fixed point multiplication
- * (scalar * generator)
- * when point is NULL, or a variable point multiplication
- * (scalar * point)
- * when point is not NULL.
- *
- * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
- * constant time bets are off (where n is the cardinality of the EC group).
- *
- * This function expects `group->order` and `group->cardinality` to be well
- * defined and non-zero: it fails with an error code otherwise.
- *
- * NB: This says nothing about the constant-timeness of the ladder step
- * implementation (i.e., the default implementation is based on EC_POINT_add and
- * EC_POINT_dbl, which of course are not constant time themselves) or the
- * underlying multiprecision arithmetic.
- *
- * The product is stored in `r`.
- *
- * This is an internal function: callers are in charge of ensuring that the
- * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
- *
- * Returns 1 on success, 0 otherwise.
- */
- int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
- const BIGNUM *scalar, const EC_POINT *point,
- BN_CTX *ctx)
- {
- int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
- EC_POINT *p = NULL;
- EC_POINT *s = NULL;
- BIGNUM *k = NULL;
- BIGNUM *lambda = NULL;
- BIGNUM *cardinality = NULL;
- int ret = 0;
- /* early exit if the input point is the point at infinity */
- if (point != NULL && EC_POINT_is_at_infinity(group, point))
- return EC_POINT_set_to_infinity(group, r);
- if (BN_is_zero(group->order)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER);
- return 0;
- }
- if (BN_is_zero(group->cofactor)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR);
- return 0;
- }
- BN_CTX_start(ctx);
- if (((p = EC_POINT_new(group)) == NULL)
- || ((s = EC_POINT_new(group)) == NULL)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- if (point == NULL) {
- if (!EC_POINT_copy(p, group->generator)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
- goto err;
- }
- } else {
- if (!EC_POINT_copy(p, point)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
- goto err;
- }
- }
- EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
- EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
- EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
- cardinality = BN_CTX_get(ctx);
- lambda = BN_CTX_get(ctx);
- k = BN_CTX_get(ctx);
- if (k == NULL) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
- goto err;
- }
- /*
- * Group cardinalities are often on a word boundary.
- * So when we pad the scalar, some timing diff might
- * pop if it needs to be expanded due to carries.
- * So expand ahead of time.
- */
- cardinality_bits = BN_num_bits(cardinality);
- group_top = bn_get_top(cardinality);
- if ((bn_wexpand(k, group_top + 2) == NULL)
- || (bn_wexpand(lambda, group_top + 2) == NULL)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
- goto err;
- }
- if (!BN_copy(k, scalar)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
- goto err;
- }
- BN_set_flags(k, BN_FLG_CONSTTIME);
- if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
- /*-
- * this is an unusual input, and we don't guarantee
- * constant-timeness
- */
- if (!BN_nnmod(k, k, cardinality, ctx)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
- goto err;
- }
- }
- if (!BN_add(lambda, k, cardinality)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
- goto err;
- }
- BN_set_flags(lambda, BN_FLG_CONSTTIME);
- if (!BN_add(k, lambda, cardinality)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
- goto err;
- }
- /*
- * lambda := scalar + cardinality
- * k := scalar + 2*cardinality
- */
- kbit = BN_is_bit_set(lambda, cardinality_bits);
- BN_consttime_swap(kbit, k, lambda, group_top + 2);
- group_top = bn_get_top(group->field);
- if ((bn_wexpand(s->X, group_top) == NULL)
- || (bn_wexpand(s->Y, group_top) == NULL)
- || (bn_wexpand(s->Z, group_top) == NULL)
- || (bn_wexpand(r->X, group_top) == NULL)
- || (bn_wexpand(r->Y, group_top) == NULL)
- || (bn_wexpand(r->Z, group_top) == NULL)
- || (bn_wexpand(p->X, group_top) == NULL)
- || (bn_wexpand(p->Y, group_top) == NULL)
- || (bn_wexpand(p->Z, group_top) == NULL)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
- goto err;
- }
- /* ensure input point is in affine coords for ladder step efficiency */
- if (!p->Z_is_one && !EC_POINT_make_affine(group, p, ctx)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
- goto err;
- }
- /* Initialize the Montgomery ladder */
- if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE);
- goto err;
- }
- /* top bit is a 1, in a fixed pos */
- pbit = 1;
- #define EC_POINT_CSWAP(c, a, b, w, t) do { \
- BN_consttime_swap(c, (a)->X, (b)->X, w); \
- BN_consttime_swap(c, (a)->Y, (b)->Y, w); \
- BN_consttime_swap(c, (a)->Z, (b)->Z, w); \
- t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
- (a)->Z_is_one ^= (t); \
- (b)->Z_is_one ^= (t); \
- } while(0)
- /*-
- * The ladder step, with branches, is
- *
- * k[i] == 0: S = add(R, S), R = dbl(R)
- * k[i] == 1: R = add(S, R), S = dbl(S)
- *
- * Swapping R, S conditionally on k[i] leaves you with state
- *
- * k[i] == 0: T, U = R, S
- * k[i] == 1: T, U = S, R
- *
- * Then perform the ECC ops.
- *
- * U = add(T, U)
- * T = dbl(T)
- *
- * Which leaves you with state
- *
- * k[i] == 0: U = add(R, S), T = dbl(R)
- * k[i] == 1: U = add(S, R), T = dbl(S)
- *
- * Swapping T, U conditionally on k[i] leaves you with state
- *
- * k[i] == 0: R, S = T, U
- * k[i] == 1: R, S = U, T
- *
- * Which leaves you with state
- *
- * k[i] == 0: S = add(R, S), R = dbl(R)
- * k[i] == 1: R = add(S, R), S = dbl(S)
- *
- * So we get the same logic, but instead of a branch it's a
- * conditional swap, followed by ECC ops, then another conditional swap.
- *
- * Optimization: The end of iteration i and start of i-1 looks like
- *
- * ...
- * CSWAP(k[i], R, S)
- * ECC
- * CSWAP(k[i], R, S)
- * (next iteration)
- * CSWAP(k[i-1], R, S)
- * ECC
- * CSWAP(k[i-1], R, S)
- * ...
- *
- * So instead of two contiguous swaps, you can merge the condition
- * bits and do a single swap.
- *
- * k[i] k[i-1] Outcome
- * 0 0 No Swap
- * 0 1 Swap
- * 1 0 Swap
- * 1 1 No Swap
- *
- * This is XOR. pbit tracks the previous bit of k.
- */
- for (i = cardinality_bits - 1; i >= 0; i--) {
- kbit = BN_is_bit_set(k, i) ^ pbit;
- EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
- /* Perform a single step of the Montgomery ladder */
- if (!ec_point_ladder_step(group, r, s, p, ctx)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE);
- goto err;
- }
- /*
- * pbit logic merges this cswap with that of the
- * next iteration
- */
- pbit ^= kbit;
- }
- /* one final cswap to move the right value into r */
- EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
- #undef EC_POINT_CSWAP
- /* Finalize ladder (and recover full point coordinates) */
- if (!ec_point_ladder_post(group, r, s, p, ctx)) {
- ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE);
- goto err;
- }
- ret = 1;
- err:
- EC_POINT_free(p);
- EC_POINT_clear_free(s);
- BN_CTX_end(ctx);
- return ret;
- }
- #undef EC_POINT_BN_set_flags
- /*
- * TODO: table should be optimised for the wNAF-based implementation,
- * sometimes smaller windows will give better performance (thus the
- * boundaries should be increased)
- */
- #define EC_window_bits_for_scalar_size(b) \
- ((size_t) \
- ((b) >= 2000 ? 6 : \
- (b) >= 800 ? 5 : \
- (b) >= 300 ? 4 : \
- (b) >= 70 ? 3 : \
- (b) >= 20 ? 2 : \
- 1))
- /*-
- * Compute
- * \sum scalars[i]*points[i],
- * also including
- * scalar*generator
- * in the addition if scalar != NULL
- */
- int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
- size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
- BN_CTX *ctx)
- {
- const EC_POINT *generator = NULL;
- EC_POINT *tmp = NULL;
- size_t totalnum;
- size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
- size_t pre_points_per_block = 0;
- size_t i, j;
- int k;
- int r_is_inverted = 0;
- int r_is_at_infinity = 1;
- size_t *wsize = NULL; /* individual window sizes */
- signed char **wNAF = NULL; /* individual wNAFs */
- size_t *wNAF_len = NULL;
- size_t max_len = 0;
- size_t num_val;
- EC_POINT **val = NULL; /* precomputation */
- EC_POINT **v;
- EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
- * 'pre_comp->points' */
- const EC_PRE_COMP *pre_comp = NULL;
- int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
- * treated like other scalars, i.e.
- * precomputation is not available */
- int ret = 0;
- if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
- /*-
- * Handle the common cases where the scalar is secret, enforcing a
- * scalar multiplication implementation based on a Montgomery ladder,
- * with various timing attack defenses.
- */
- if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
- /*-
- * In this case we want to compute scalar * GeneratorPoint: this
- * codepath is reached most prominently by (ephemeral) key
- * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
- * ECDH keygen/first half), where the scalar is always secret. This
- * is why we ignore if BN_FLG_CONSTTIME is actually set and we
- * always call the ladder version.
- */
- return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
- }
- if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
- /*-
- * In this case we want to compute scalar * VariablePoint: this
- * codepath is reached most prominently by the second half of ECDH,
- * where the secret scalar is multiplied by the peer's public point.
- * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
- * actually set and we always call the ladder version.
- */
- return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
- }
- }
- if (scalar != NULL) {
- generator = EC_GROUP_get0_generator(group);
- if (generator == NULL) {
- ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
- goto err;
- }
- /* look if we can use precomputed multiples of generator */
- pre_comp = group->pre_comp.ec;
- if (pre_comp && pre_comp->numblocks
- && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
- 0)) {
- blocksize = pre_comp->blocksize;
- /*
- * determine maximum number of blocks that wNAF splitting may
- * yield (NB: maximum wNAF length is bit length plus one)
- */
- numblocks = (BN_num_bits(scalar) / blocksize) + 1;
- /*
- * we cannot use more blocks than we have precomputation for
- */
- if (numblocks > pre_comp->numblocks)
- numblocks = pre_comp->numblocks;
- pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
- /* check that pre_comp looks sane */
- if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- } else {
- /* can't use precomputation */
- pre_comp = NULL;
- numblocks = 1;
- num_scalar = 1; /* treat 'scalar' like 'num'-th element of
- * 'scalars' */
- }
- }
- totalnum = num + numblocks;
- wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
- wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
- /* include space for pivot */
- wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
- val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
- /* Ensure wNAF is initialised in case we end up going to err */
- if (wNAF != NULL)
- wNAF[0] = NULL; /* preliminary pivot */
- if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- /*
- * num_val will be the total number of temporarily precomputed points
- */
- num_val = 0;
- for (i = 0; i < num + num_scalar; i++) {
- size_t bits;
- bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
- wsize[i] = EC_window_bits_for_scalar_size(bits);
- num_val += (size_t)1 << (wsize[i] - 1);
- wNAF[i + 1] = NULL; /* make sure we always have a pivot */
- wNAF[i] =
- bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
- &wNAF_len[i]);
- if (wNAF[i] == NULL)
- goto err;
- if (wNAF_len[i] > max_len)
- max_len = wNAF_len[i];
- }
- if (numblocks) {
- /* we go here iff scalar != NULL */
- if (pre_comp == NULL) {
- if (num_scalar != 1) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- /* we have already generated a wNAF for 'scalar' */
- } else {
- signed char *tmp_wNAF = NULL;
- size_t tmp_len = 0;
- if (num_scalar != 0) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- /*
- * use the window size for which we have precomputation
- */
- wsize[num] = pre_comp->w;
- tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
- if (!tmp_wNAF)
- goto err;
- if (tmp_len <= max_len) {
- /*
- * One of the other wNAFs is at least as long as the wNAF
- * belonging to the generator, so wNAF splitting will not buy
- * us anything.
- */
- numblocks = 1;
- totalnum = num + 1; /* don't use wNAF splitting */
- wNAF[num] = tmp_wNAF;
- wNAF[num + 1] = NULL;
- wNAF_len[num] = tmp_len;
- /*
- * pre_comp->points starts with the points that we need here:
- */
- val_sub[num] = pre_comp->points;
- } else {
- /*
- * don't include tmp_wNAF directly into wNAF array - use wNAF
- * splitting and include the blocks
- */
- signed char *pp;
- EC_POINT **tmp_points;
- if (tmp_len < numblocks * blocksize) {
- /*
- * possibly we can do with fewer blocks than estimated
- */
- numblocks = (tmp_len + blocksize - 1) / blocksize;
- if (numblocks > pre_comp->numblocks) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- OPENSSL_free(tmp_wNAF);
- goto err;
- }
- totalnum = num + numblocks;
- }
- /* split wNAF in 'numblocks' parts */
- pp = tmp_wNAF;
- tmp_points = pre_comp->points;
- for (i = num; i < totalnum; i++) {
- if (i < totalnum - 1) {
- wNAF_len[i] = blocksize;
- if (tmp_len < blocksize) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- OPENSSL_free(tmp_wNAF);
- goto err;
- }
- tmp_len -= blocksize;
- } else
- /*
- * last block gets whatever is left (this could be
- * more or less than 'blocksize'!)
- */
- wNAF_len[i] = tmp_len;
- wNAF[i + 1] = NULL;
- wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
- if (wNAF[i] == NULL) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
- OPENSSL_free(tmp_wNAF);
- goto err;
- }
- memcpy(wNAF[i], pp, wNAF_len[i]);
- if (wNAF_len[i] > max_len)
- max_len = wNAF_len[i];
- if (*tmp_points == NULL) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- OPENSSL_free(tmp_wNAF);
- goto err;
- }
- val_sub[i] = tmp_points;
- tmp_points += pre_points_per_block;
- pp += blocksize;
- }
- OPENSSL_free(tmp_wNAF);
- }
- }
- }
- /*
- * All points we precompute now go into a single array 'val'.
- * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
- * subarray of 'pre_comp->points' if we already have precomputation.
- */
- val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
- if (val == NULL) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- val[num_val] = NULL; /* pivot element */
- /* allocate points for precomputation */
- v = val;
- for (i = 0; i < num + num_scalar; i++) {
- val_sub[i] = v;
- for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
- *v = EC_POINT_new(group);
- if (*v == NULL)
- goto err;
- v++;
- }
- }
- if (!(v == val + num_val)) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- if ((tmp = EC_POINT_new(group)) == NULL)
- goto err;
- /*-
- * prepare precomputed values:
- * val_sub[i][0] := points[i]
- * val_sub[i][1] := 3 * points[i]
- * val_sub[i][2] := 5 * points[i]
- * ...
- */
- for (i = 0; i < num + num_scalar; i++) {
- if (i < num) {
- if (!EC_POINT_copy(val_sub[i][0], points[i]))
- goto err;
- } else {
- if (!EC_POINT_copy(val_sub[i][0], generator))
- goto err;
- }
- if (wsize[i] > 1) {
- if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
- goto err;
- for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
- if (!EC_POINT_add
- (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
- goto err;
- }
- }
- }
- if (!EC_POINTs_make_affine(group, num_val, val, ctx))
- goto err;
- r_is_at_infinity = 1;
- for (k = max_len - 1; k >= 0; k--) {
- if (!r_is_at_infinity) {
- if (!EC_POINT_dbl(group, r, r, ctx))
- goto err;
- }
- for (i = 0; i < totalnum; i++) {
- if (wNAF_len[i] > (size_t)k) {
- int digit = wNAF[i][k];
- int is_neg;
- if (digit) {
- is_neg = digit < 0;
- if (is_neg)
- digit = -digit;
- if (is_neg != r_is_inverted) {
- if (!r_is_at_infinity) {
- if (!EC_POINT_invert(group, r, ctx))
- goto err;
- }
- r_is_inverted = !r_is_inverted;
- }
- /* digit > 0 */
- if (r_is_at_infinity) {
- if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
- goto err;
- /*-
- * Apply coordinate blinding for EC_POINT.
- *
- * The underlying EC_METHOD can optionally implement this function:
- * ec_point_blind_coordinates() returns 0 in case of errors or 1 on
- * success or if coordinate blinding is not implemented for this
- * group.
- */
- if (!ec_point_blind_coordinates(group, r, ctx)) {
- ECerr(EC_F_EC_WNAF_MUL, EC_R_POINT_COORDINATES_BLIND_FAILURE);
- goto err;
- }
- r_is_at_infinity = 0;
- } else {
- if (!EC_POINT_add
- (group, r, r, val_sub[i][digit >> 1], ctx))
- goto err;
- }
- }
- }
- }
- }
- if (r_is_at_infinity) {
- if (!EC_POINT_set_to_infinity(group, r))
- goto err;
- } else {
- if (r_is_inverted)
- if (!EC_POINT_invert(group, r, ctx))
- goto err;
- }
- ret = 1;
- err:
- EC_POINT_free(tmp);
- OPENSSL_free(wsize);
- OPENSSL_free(wNAF_len);
- if (wNAF != NULL) {
- signed char **w;
- for (w = wNAF; *w != NULL; w++)
- OPENSSL_free(*w);
- OPENSSL_free(wNAF);
- }
- if (val != NULL) {
- for (v = val; *v != NULL; v++)
- EC_POINT_clear_free(*v);
- OPENSSL_free(val);
- }
- OPENSSL_free(val_sub);
- return ret;
- }
- /*-
- * ec_wNAF_precompute_mult()
- * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
- * for use with wNAF splitting as implemented in ec_wNAF_mul().
- *
- * 'pre_comp->points' is an array of multiples of the generator
- * of the following form:
- * points[0] = generator;
- * points[1] = 3 * generator;
- * ...
- * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
- * points[2^(w-1)] = 2^blocksize * generator;
- * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
- * ...
- * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
- * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
- * ...
- * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
- * points[2^(w-1)*numblocks] = NULL
- */
- int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
- {
- const EC_POINT *generator;
- EC_POINT *tmp_point = NULL, *base = NULL, **var;
- BN_CTX *new_ctx = NULL;
- const BIGNUM *order;
- size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
- EC_POINT **points = NULL;
- EC_PRE_COMP *pre_comp;
- int ret = 0;
- /* if there is an old EC_PRE_COMP object, throw it away */
- EC_pre_comp_free(group);
- if ((pre_comp = ec_pre_comp_new(group)) == NULL)
- return 0;
- generator = EC_GROUP_get0_generator(group);
- if (generator == NULL) {
- ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
- goto err;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- goto err;
- }
- BN_CTX_start(ctx);
- order = EC_GROUP_get0_order(group);
- if (order == NULL)
- goto err;
- if (BN_is_zero(order)) {
- ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
- goto err;
- }
- bits = BN_num_bits(order);
- /*
- * The following parameters mean we precompute (approximately) one point
- * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
- * bit lengths, other parameter combinations might provide better
- * efficiency.
- */
- blocksize = 8;
- w = 4;
- if (EC_window_bits_for_scalar_size(bits) > w) {
- /* let's not make the window too small ... */
- w = EC_window_bits_for_scalar_size(bits);
- }
- numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
- * to use for wNAF
- * splitting */
- pre_points_per_block = (size_t)1 << (w - 1);
- num = pre_points_per_block * numblocks; /* number of points to compute
- * and store */
- points = OPENSSL_malloc(sizeof(*points) * (num + 1));
- if (points == NULL) {
- ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- var = points;
- var[num] = NULL; /* pivot */
- for (i = 0; i < num; i++) {
- if ((var[i] = EC_POINT_new(group)) == NULL) {
- ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- }
- if ((tmp_point = EC_POINT_new(group)) == NULL
- || (base = EC_POINT_new(group)) == NULL) {
- ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- if (!EC_POINT_copy(base, generator))
- goto err;
- /* do the precomputation */
- for (i = 0; i < numblocks; i++) {
- size_t j;
- if (!EC_POINT_dbl(group, tmp_point, base, ctx))
- goto err;
- if (!EC_POINT_copy(*var++, base))
- goto err;
- for (j = 1; j < pre_points_per_block; j++, var++) {
- /*
- * calculate odd multiples of the current base point
- */
- if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
- goto err;
- }
- if (i < numblocks - 1) {
- /*
- * get the next base (multiply current one by 2^blocksize)
- */
- size_t k;
- if (blocksize <= 2) {
- ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- if (!EC_POINT_dbl(group, base, tmp_point, ctx))
- goto err;
- for (k = 2; k < blocksize; k++) {
- if (!EC_POINT_dbl(group, base, base, ctx))
- goto err;
- }
- }
- }
- if (!EC_POINTs_make_affine(group, num, points, ctx))
- goto err;
- pre_comp->group = group;
- pre_comp->blocksize = blocksize;
- pre_comp->numblocks = numblocks;
- pre_comp->w = w;
- pre_comp->points = points;
- points = NULL;
- pre_comp->num = num;
- SETPRECOMP(group, ec, pre_comp);
- pre_comp = NULL;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- EC_ec_pre_comp_free(pre_comp);
- if (points) {
- EC_POINT **p;
- for (p = points; *p != NULL; p++)
- EC_POINT_free(*p);
- OPENSSL_free(points);
- }
- EC_POINT_free(tmp_point);
- EC_POINT_free(base);
- return ret;
- }
- int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
- {
- return HAVEPRECOMP(group, ec);
- }
|