123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734 |
- /*
- * Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- /* Copyright 2011 Google Inc.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- *
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
- *
- * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
- * and Adam Langley's public domain 64-bit C implementation of curve25519
- */
- #include <openssl/opensslconf.h>
- #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
- NON_EMPTY_TRANSLATION_UNIT
- #else
- # include <stdint.h>
- # include <string.h>
- # include <openssl/err.h>
- # include "ec_local.h"
- # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
- /* even with gcc, the typedef won't work for 32-bit platforms */
- typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit
- * platforms */
- # else
- # error "Your compiler doesn't appear to support 128-bit integer types"
- # endif
- typedef uint8_t u8;
- typedef uint64_t u64;
- /******************************************************************************/
- /*-
- * INTERNAL REPRESENTATION OF FIELD ELEMENTS
- *
- * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
- * using 64-bit coefficients called 'limbs',
- * and sometimes (for multiplication results) as
- * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
- * using 128-bit coefficients called 'widelimbs'.
- * A 4-limb representation is an 'felem';
- * a 7-widelimb representation is a 'widefelem'.
- * Even within felems, bits of adjacent limbs overlap, and we don't always
- * reduce the representations: we ensure that inputs to each felem
- * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
- * and fit into a 128-bit word without overflow. The coefficients are then
- * again partially reduced to obtain an felem satisfying a_i < 2^57.
- * We only reduce to the unique minimal representation at the end of the
- * computation.
- */
- typedef uint64_t limb;
- typedef uint64_t limb_aX __attribute((__aligned__(1)));
- typedef uint128_t widelimb;
- typedef limb felem[4];
- typedef widelimb widefelem[7];
- /*
- * Field element represented as a byte array. 28*8 = 224 bits is also the
- * group order size for the elliptic curve, and we also use this type for
- * scalars for point multiplication.
- */
- typedef u8 felem_bytearray[28];
- static const felem_bytearray nistp224_curve_params[5] = {
- {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
- {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
- {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
- 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
- 0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
- {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
- 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
- 0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
- {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
- 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
- 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
- };
- /*-
- * Precomputed multiples of the standard generator
- * Points are given in coordinates (X, Y, Z) where Z normally is 1
- * (0 for the point at infinity).
- * For each field element, slice a_0 is word 0, etc.
- *
- * The table has 2 * 16 elements, starting with the following:
- * index | bits | point
- * ------+---------+------------------------------
- * 0 | 0 0 0 0 | 0G
- * 1 | 0 0 0 1 | 1G
- * 2 | 0 0 1 0 | 2^56G
- * 3 | 0 0 1 1 | (2^56 + 1)G
- * 4 | 0 1 0 0 | 2^112G
- * 5 | 0 1 0 1 | (2^112 + 1)G
- * 6 | 0 1 1 0 | (2^112 + 2^56)G
- * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
- * 8 | 1 0 0 0 | 2^168G
- * 9 | 1 0 0 1 | (2^168 + 1)G
- * 10 | 1 0 1 0 | (2^168 + 2^56)G
- * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
- * 12 | 1 1 0 0 | (2^168 + 2^112)G
- * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
- * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
- * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
- * followed by a copy of this with each element multiplied by 2^28.
- *
- * The reason for this is so that we can clock bits into four different
- * locations when doing simple scalar multiplies against the base point,
- * and then another four locations using the second 16 elements.
- */
- static const felem gmul[2][16][3] = {
- {{{0, 0, 0, 0},
- {0, 0, 0, 0},
- {0, 0, 0, 0}},
- {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
- {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
- {1, 0, 0, 0}},
- {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
- {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
- {1, 0, 0, 0}},
- {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
- {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
- {1, 0, 0, 0}},
- {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
- {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
- {1, 0, 0, 0}},
- {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
- {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
- {1, 0, 0, 0}},
- {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
- {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
- {1, 0, 0, 0}},
- {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
- {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
- {1, 0, 0, 0}},
- {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
- {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
- {1, 0, 0, 0}},
- {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
- {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
- {1, 0, 0, 0}},
- {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
- {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
- {1, 0, 0, 0}},
- {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
- {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
- {1, 0, 0, 0}},
- {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
- {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
- {1, 0, 0, 0}},
- {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
- {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
- {1, 0, 0, 0}},
- {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
- {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
- {1, 0, 0, 0}},
- {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
- {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
- {1, 0, 0, 0}}},
- {{{0, 0, 0, 0},
- {0, 0, 0, 0},
- {0, 0, 0, 0}},
- {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
- {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
- {1, 0, 0, 0}},
- {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
- {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
- {1, 0, 0, 0}},
- {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
- {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
- {1, 0, 0, 0}},
- {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
- {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
- {1, 0, 0, 0}},
- {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
- {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
- {1, 0, 0, 0}},
- {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
- {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
- {1, 0, 0, 0}},
- {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
- {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
- {1, 0, 0, 0}},
- {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
- {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
- {1, 0, 0, 0}},
- {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
- {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
- {1, 0, 0, 0}},
- {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
- {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
- {1, 0, 0, 0}},
- {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
- {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
- {1, 0, 0, 0}},
- {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
- {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
- {1, 0, 0, 0}},
- {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
- {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
- {1, 0, 0, 0}},
- {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
- {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
- {1, 0, 0, 0}},
- {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
- {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
- {1, 0, 0, 0}}}
- };
- /* Precomputation for the group generator. */
- struct nistp224_pre_comp_st {
- felem g_pre_comp[2][16][3];
- CRYPTO_REF_COUNT references;
- CRYPTO_RWLOCK *lock;
- };
- const EC_METHOD *EC_GFp_nistp224_method(void)
- {
- static const EC_METHOD ret = {
- EC_FLAGS_DEFAULT_OCT,
- NID_X9_62_prime_field,
- ec_GFp_nistp224_group_init,
- ec_GFp_simple_group_finish,
- ec_GFp_simple_group_clear_finish,
- ec_GFp_nist_group_copy,
- ec_GFp_nistp224_group_set_curve,
- ec_GFp_simple_group_get_curve,
- ec_GFp_simple_group_get_degree,
- ec_group_simple_order_bits,
- ec_GFp_simple_group_check_discriminant,
- ec_GFp_simple_point_init,
- ec_GFp_simple_point_finish,
- ec_GFp_simple_point_clear_finish,
- ec_GFp_simple_point_copy,
- ec_GFp_simple_point_set_to_infinity,
- ec_GFp_simple_set_Jprojective_coordinates_GFp,
- ec_GFp_simple_get_Jprojective_coordinates_GFp,
- ec_GFp_simple_point_set_affine_coordinates,
- ec_GFp_nistp224_point_get_affine_coordinates,
- 0 /* point_set_compressed_coordinates */ ,
- 0 /* point2oct */ ,
- 0 /* oct2point */ ,
- ec_GFp_simple_add,
- ec_GFp_simple_dbl,
- ec_GFp_simple_invert,
- ec_GFp_simple_is_at_infinity,
- ec_GFp_simple_is_on_curve,
- ec_GFp_simple_cmp,
- ec_GFp_simple_make_affine,
- ec_GFp_simple_points_make_affine,
- ec_GFp_nistp224_points_mul,
- ec_GFp_nistp224_precompute_mult,
- ec_GFp_nistp224_have_precompute_mult,
- ec_GFp_nist_field_mul,
- ec_GFp_nist_field_sqr,
- 0 /* field_div */ ,
- ec_GFp_simple_field_inv,
- 0 /* field_encode */ ,
- 0 /* field_decode */ ,
- 0, /* field_set_to_one */
- ec_key_simple_priv2oct,
- ec_key_simple_oct2priv,
- 0, /* set private */
- ec_key_simple_generate_key,
- ec_key_simple_check_key,
- ec_key_simple_generate_public_key,
- 0, /* keycopy */
- 0, /* keyfinish */
- ecdh_simple_compute_key,
- 0, /* field_inverse_mod_ord */
- 0, /* blind_coordinates */
- 0, /* ladder_pre */
- 0, /* ladder_step */
- 0 /* ladder_post */
- };
- return &ret;
- }
- /*
- * Helper functions to convert field elements to/from internal representation
- */
- static void bin28_to_felem(felem out, const u8 in[28])
- {
- out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
- out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
- out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
- out[3] = (*((const limb_aX *)(in + 20))) >> 8;
- }
- static void felem_to_bin28(u8 out[28], const felem in)
- {
- unsigned i;
- for (i = 0; i < 7; ++i) {
- out[i] = in[0] >> (8 * i);
- out[i + 7] = in[1] >> (8 * i);
- out[i + 14] = in[2] >> (8 * i);
- out[i + 21] = in[3] >> (8 * i);
- }
- }
- /* From OpenSSL BIGNUM to internal representation */
- static int BN_to_felem(felem out, const BIGNUM *bn)
- {
- felem_bytearray b_out;
- int num_bytes;
- if (BN_is_negative(bn)) {
- ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
- return 0;
- }
- num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
- if (num_bytes < 0) {
- ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
- return 0;
- }
- bin28_to_felem(out, b_out);
- return 1;
- }
- /* From internal representation to OpenSSL BIGNUM */
- static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
- {
- felem_bytearray b_out;
- felem_to_bin28(b_out, in);
- return BN_lebin2bn(b_out, sizeof(b_out), out);
- }
- /******************************************************************************/
- /*-
- * FIELD OPERATIONS
- *
- * Field operations, using the internal representation of field elements.
- * NB! These operations are specific to our point multiplication and cannot be
- * expected to be correct in general - e.g., multiplication with a large scalar
- * will cause an overflow.
- *
- */
- static void felem_one(felem out)
- {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- }
- static void felem_assign(felem out, const felem in)
- {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = in[2];
- out[3] = in[3];
- }
- /* Sum two field elements: out += in */
- static void felem_sum(felem out, const felem in)
- {
- out[0] += in[0];
- out[1] += in[1];
- out[2] += in[2];
- out[3] += in[3];
- }
- /* Subtract field elements: out -= in */
- /* Assumes in[i] < 2^57 */
- static void felem_diff(felem out, const felem in)
- {
- static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
- static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
- static const limb two58m42m2 = (((limb) 1) << 58) -
- (((limb) 1) << 42) - (((limb) 1) << 2);
- /* Add 0 mod 2^224-2^96+1 to ensure out > in */
- out[0] += two58p2;
- out[1] += two58m42m2;
- out[2] += two58m2;
- out[3] += two58m2;
- out[0] -= in[0];
- out[1] -= in[1];
- out[2] -= in[2];
- out[3] -= in[3];
- }
- /* Subtract in unreduced 128-bit mode: out -= in */
- /* Assumes in[i] < 2^119 */
- static void widefelem_diff(widefelem out, const widefelem in)
- {
- static const widelimb two120 = ((widelimb) 1) << 120;
- static const widelimb two120m64 = (((widelimb) 1) << 120) -
- (((widelimb) 1) << 64);
- static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
- (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
- /* Add 0 mod 2^224-2^96+1 to ensure out > in */
- out[0] += two120;
- out[1] += two120m64;
- out[2] += two120m64;
- out[3] += two120;
- out[4] += two120m104m64;
- out[5] += two120m64;
- out[6] += two120m64;
- out[0] -= in[0];
- out[1] -= in[1];
- out[2] -= in[2];
- out[3] -= in[3];
- out[4] -= in[4];
- out[5] -= in[5];
- out[6] -= in[6];
- }
- /* Subtract in mixed mode: out128 -= in64 */
- /* in[i] < 2^63 */
- static void felem_diff_128_64(widefelem out, const felem in)
- {
- static const widelimb two64p8 = (((widelimb) 1) << 64) +
- (((widelimb) 1) << 8);
- static const widelimb two64m8 = (((widelimb) 1) << 64) -
- (((widelimb) 1) << 8);
- static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
- (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
- /* Add 0 mod 2^224-2^96+1 to ensure out > in */
- out[0] += two64p8;
- out[1] += two64m48m8;
- out[2] += two64m8;
- out[3] += two64m8;
- out[0] -= in[0];
- out[1] -= in[1];
- out[2] -= in[2];
- out[3] -= in[3];
- }
- /*
- * Multiply a field element by a scalar: out = out * scalar The scalars we
- * actually use are small, so results fit without overflow
- */
- static void felem_scalar(felem out, const limb scalar)
- {
- out[0] *= scalar;
- out[1] *= scalar;
- out[2] *= scalar;
- out[3] *= scalar;
- }
- /*
- * Multiply an unreduced field element by a scalar: out = out * scalar The
- * scalars we actually use are small, so results fit without overflow
- */
- static void widefelem_scalar(widefelem out, const widelimb scalar)
- {
- out[0] *= scalar;
- out[1] *= scalar;
- out[2] *= scalar;
- out[3] *= scalar;
- out[4] *= scalar;
- out[5] *= scalar;
- out[6] *= scalar;
- }
- /* Square a field element: out = in^2 */
- static void felem_square(widefelem out, const felem in)
- {
- limb tmp0, tmp1, tmp2;
- tmp0 = 2 * in[0];
- tmp1 = 2 * in[1];
- tmp2 = 2 * in[2];
- out[0] = ((widelimb) in[0]) * in[0];
- out[1] = ((widelimb) in[0]) * tmp1;
- out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
- out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
- out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
- out[5] = ((widelimb) in[3]) * tmp2;
- out[6] = ((widelimb) in[3]) * in[3];
- }
- /* Multiply two field elements: out = in1 * in2 */
- static void felem_mul(widefelem out, const felem in1, const felem in2)
- {
- out[0] = ((widelimb) in1[0]) * in2[0];
- out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
- out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
- ((widelimb) in1[2]) * in2[0];
- out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
- ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
- out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
- ((widelimb) in1[3]) * in2[1];
- out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
- out[6] = ((widelimb) in1[3]) * in2[3];
- }
- /*-
- * Reduce seven 128-bit coefficients to four 64-bit coefficients.
- * Requires in[i] < 2^126,
- * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
- static void felem_reduce(felem out, const widefelem in)
- {
- static const widelimb two127p15 = (((widelimb) 1) << 127) +
- (((widelimb) 1) << 15);
- static const widelimb two127m71 = (((widelimb) 1) << 127) -
- (((widelimb) 1) << 71);
- static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
- (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
- widelimb output[5];
- /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
- output[0] = in[0] + two127p15;
- output[1] = in[1] + two127m71m55;
- output[2] = in[2] + two127m71;
- output[3] = in[3];
- output[4] = in[4];
- /* Eliminate in[4], in[5], in[6] */
- output[4] += in[6] >> 16;
- output[3] += (in[6] & 0xffff) << 40;
- output[2] -= in[6];
- output[3] += in[5] >> 16;
- output[2] += (in[5] & 0xffff) << 40;
- output[1] -= in[5];
- output[2] += output[4] >> 16;
- output[1] += (output[4] & 0xffff) << 40;
- output[0] -= output[4];
- /* Carry 2 -> 3 -> 4 */
- output[3] += output[2] >> 56;
- output[2] &= 0x00ffffffffffffff;
- output[4] = output[3] >> 56;
- output[3] &= 0x00ffffffffffffff;
- /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
- /* Eliminate output[4] */
- output[2] += output[4] >> 16;
- /* output[2] < 2^56 + 2^56 = 2^57 */
- output[1] += (output[4] & 0xffff) << 40;
- output[0] -= output[4];
- /* Carry 0 -> 1 -> 2 -> 3 */
- output[1] += output[0] >> 56;
- out[0] = output[0] & 0x00ffffffffffffff;
- output[2] += output[1] >> 56;
- /* output[2] < 2^57 + 2^72 */
- out[1] = output[1] & 0x00ffffffffffffff;
- output[3] += output[2] >> 56;
- /* output[3] <= 2^56 + 2^16 */
- out[2] = output[2] & 0x00ffffffffffffff;
- /*-
- * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
- * out[3] <= 2^56 + 2^16 (due to final carry),
- * so out < 2*p
- */
- out[3] = output[3];
- }
- static void felem_square_reduce(felem out, const felem in)
- {
- widefelem tmp;
- felem_square(tmp, in);
- felem_reduce(out, tmp);
- }
- static void felem_mul_reduce(felem out, const felem in1, const felem in2)
- {
- widefelem tmp;
- felem_mul(tmp, in1, in2);
- felem_reduce(out, tmp);
- }
- /*
- * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
- * call felem_reduce first)
- */
- static void felem_contract(felem out, const felem in)
- {
- static const int64_t two56 = ((limb) 1) << 56;
- /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
- /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
- int64_t tmp[4], a;
- tmp[0] = in[0];
- tmp[1] = in[1];
- tmp[2] = in[2];
- tmp[3] = in[3];
- /* Case 1: a = 1 iff in >= 2^224 */
- a = (in[3] >> 56);
- tmp[0] -= a;
- tmp[1] += a << 40;
- tmp[3] &= 0x00ffffffffffffff;
- /*
- * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
- * and the lower part is non-zero
- */
- a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
- (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
- a &= 0x00ffffffffffffff;
- /* turn a into an all-one mask (if a = 0) or an all-zero mask */
- a = (a - 1) >> 63;
- /* subtract 2^224 - 2^96 + 1 if a is all-one */
- tmp[3] &= a ^ 0xffffffffffffffff;
- tmp[2] &= a ^ 0xffffffffffffffff;
- tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
- tmp[0] -= 1 & a;
- /*
- * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
- * non-zero, so we only need one step
- */
- a = tmp[0] >> 63;
- tmp[0] += two56 & a;
- tmp[1] -= 1 & a;
- /* carry 1 -> 2 -> 3 */
- tmp[2] += tmp[1] >> 56;
- tmp[1] &= 0x00ffffffffffffff;
- tmp[3] += tmp[2] >> 56;
- tmp[2] &= 0x00ffffffffffffff;
- /* Now 0 <= out < p */
- out[0] = tmp[0];
- out[1] = tmp[1];
- out[2] = tmp[2];
- out[3] = tmp[3];
- }
- /*
- * Get negative value: out = -in
- * Requires in[i] < 2^63,
- * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
- */
- static void felem_neg(felem out, const felem in)
- {
- widefelem tmp = {0};
- felem_diff_128_64(tmp, in);
- felem_reduce(out, tmp);
- }
- /*
- * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
- * elements are reduced to in < 2^225, so we only need to check three cases:
- * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
- */
- static limb felem_is_zero(const felem in)
- {
- limb zero, two224m96p1, two225m97p2;
- zero = in[0] | in[1] | in[2] | in[3];
- zero = (((int64_t) (zero) - 1) >> 63) & 1;
- two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
- | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
- two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
- two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
- | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
- two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
- return (zero | two224m96p1 | two225m97p2);
- }
- static int felem_is_zero_int(const void *in)
- {
- return (int)(felem_is_zero(in) & ((limb) 1));
- }
- /* Invert a field element */
- /* Computation chain copied from djb's code */
- static void felem_inv(felem out, const felem in)
- {
- felem ftmp, ftmp2, ftmp3, ftmp4;
- widefelem tmp;
- unsigned i;
- felem_square(tmp, in);
- felem_reduce(ftmp, tmp); /* 2 */
- felem_mul(tmp, in, ftmp);
- felem_reduce(ftmp, tmp); /* 2^2 - 1 */
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); /* 2^3 - 2 */
- felem_mul(tmp, in, ftmp);
- felem_reduce(ftmp, tmp); /* 2^3 - 1 */
- felem_square(tmp, ftmp);
- felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
- felem_mul(tmp, ftmp2, ftmp);
- felem_reduce(ftmp, tmp); /* 2^6 - 1 */
- felem_square(tmp, ftmp);
- felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
- for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp);
- }
- felem_mul(tmp, ftmp2, ftmp);
- felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
- for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp);
- }
- felem_mul(tmp, ftmp3, ftmp2);
- felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
- for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp3, tmp);
- }
- felem_mul(tmp, ftmp3, ftmp2);
- felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
- for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */
- felem_square(tmp, ftmp4);
- felem_reduce(ftmp4, tmp);
- }
- felem_mul(tmp, ftmp3, ftmp4);
- felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
- felem_square(tmp, ftmp3);
- felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
- for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */
- felem_square(tmp, ftmp4);
- felem_reduce(ftmp4, tmp);
- }
- felem_mul(tmp, ftmp2, ftmp4);
- felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
- for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp);
- }
- felem_mul(tmp, ftmp2, ftmp);
- felem_reduce(ftmp, tmp); /* 2^126 - 1 */
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); /* 2^127 - 2 */
- felem_mul(tmp, ftmp, in);
- felem_reduce(ftmp, tmp); /* 2^127 - 1 */
- for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp);
- }
- felem_mul(tmp, ftmp, ftmp3);
- felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
- }
- /*
- * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
- * out to itself.
- */
- static void copy_conditional(felem out, const felem in, limb icopy)
- {
- unsigned i;
- /*
- * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
- */
- const limb copy = -icopy;
- for (i = 0; i < 4; ++i) {
- const limb tmp = copy & (in[i] ^ out[i]);
- out[i] ^= tmp;
- }
- }
- /******************************************************************************/
- /*-
- * ELLIPTIC CURVE POINT OPERATIONS
- *
- * Points are represented in Jacobian projective coordinates:
- * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
- * or to the point at infinity if Z == 0.
- *
- */
- /*-
- * Double an elliptic curve point:
- * (X', Y', Z') = 2 * (X, Y, Z), where
- * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
- * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
- * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
- * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
- * while x_out == y_in is not (maybe this works, but it's not tested).
- */
- static void
- point_double(felem x_out, felem y_out, felem z_out,
- const felem x_in, const felem y_in, const felem z_in)
- {
- widefelem tmp, tmp2;
- felem delta, gamma, beta, alpha, ftmp, ftmp2;
- felem_assign(ftmp, x_in);
- felem_assign(ftmp2, x_in);
- /* delta = z^2 */
- felem_square(tmp, z_in);
- felem_reduce(delta, tmp);
- /* gamma = y^2 */
- felem_square(tmp, y_in);
- felem_reduce(gamma, tmp);
- /* beta = x*gamma */
- felem_mul(tmp, x_in, gamma);
- felem_reduce(beta, tmp);
- /* alpha = 3*(x-delta)*(x+delta) */
- felem_diff(ftmp, delta);
- /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
- felem_sum(ftmp2, delta);
- /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
- felem_scalar(ftmp2, 3);
- /* ftmp2[i] < 3 * 2^58 < 2^60 */
- felem_mul(tmp, ftmp, ftmp2);
- /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
- felem_reduce(alpha, tmp);
- /* x' = alpha^2 - 8*beta */
- felem_square(tmp, alpha);
- /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
- felem_assign(ftmp, beta);
- felem_scalar(ftmp, 8);
- /* ftmp[i] < 8 * 2^57 = 2^60 */
- felem_diff_128_64(tmp, ftmp);
- /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
- felem_reduce(x_out, tmp);
- /* z' = (y + z)^2 - gamma - delta */
- felem_sum(delta, gamma);
- /* delta[i] < 2^57 + 2^57 = 2^58 */
- felem_assign(ftmp, y_in);
- felem_sum(ftmp, z_in);
- /* ftmp[i] < 2^57 + 2^57 = 2^58 */
- felem_square(tmp, ftmp);
- /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
- felem_diff_128_64(tmp, delta);
- /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
- felem_reduce(z_out, tmp);
- /* y' = alpha*(4*beta - x') - 8*gamma^2 */
- felem_scalar(beta, 4);
- /* beta[i] < 4 * 2^57 = 2^59 */
- felem_diff(beta, x_out);
- /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
- felem_mul(tmp, alpha, beta);
- /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
- felem_square(tmp2, gamma);
- /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
- widefelem_scalar(tmp2, 8);
- /* tmp2[i] < 8 * 2^116 = 2^119 */
- widefelem_diff(tmp, tmp2);
- /* tmp[i] < 2^119 + 2^120 < 2^121 */
- felem_reduce(y_out, tmp);
- }
- /*-
- * Add two elliptic curve points:
- * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
- * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
- * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
- * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
- * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
- * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
- *
- * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
- */
- /*
- * This function is not entirely constant-time: it includes a branch for
- * checking whether the two input points are equal, (while not equal to the
- * point at infinity). This case never happens during single point
- * multiplication, so there is no timing leak for ECDH or ECDSA signing.
- */
- static void point_add(felem x3, felem y3, felem z3,
- const felem x1, const felem y1, const felem z1,
- const int mixed, const felem x2, const felem y2,
- const felem z2)
- {
- felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
- widefelem tmp, tmp2;
- limb z1_is_zero, z2_is_zero, x_equal, y_equal;
- limb points_equal;
- if (!mixed) {
- /* ftmp2 = z2^2 */
- felem_square(tmp, z2);
- felem_reduce(ftmp2, tmp);
- /* ftmp4 = z2^3 */
- felem_mul(tmp, ftmp2, z2);
- felem_reduce(ftmp4, tmp);
- /* ftmp4 = z2^3*y1 */
- felem_mul(tmp2, ftmp4, y1);
- felem_reduce(ftmp4, tmp2);
- /* ftmp2 = z2^2*x1 */
- felem_mul(tmp2, ftmp2, x1);
- felem_reduce(ftmp2, tmp2);
- } else {
- /*
- * We'll assume z2 = 1 (special case z2 = 0 is handled later)
- */
- /* ftmp4 = z2^3*y1 */
- felem_assign(ftmp4, y1);
- /* ftmp2 = z2^2*x1 */
- felem_assign(ftmp2, x1);
- }
- /* ftmp = z1^2 */
- felem_square(tmp, z1);
- felem_reduce(ftmp, tmp);
- /* ftmp3 = z1^3 */
- felem_mul(tmp, ftmp, z1);
- felem_reduce(ftmp3, tmp);
- /* tmp = z1^3*y2 */
- felem_mul(tmp, ftmp3, y2);
- /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
- /* ftmp3 = z1^3*y2 - z2^3*y1 */
- felem_diff_128_64(tmp, ftmp4);
- /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
- felem_reduce(ftmp3, tmp);
- /* tmp = z1^2*x2 */
- felem_mul(tmp, ftmp, x2);
- /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
- /* ftmp = z1^2*x2 - z2^2*x1 */
- felem_diff_128_64(tmp, ftmp2);
- /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
- felem_reduce(ftmp, tmp);
- /*
- * The formulae are incorrect if the points are equal, in affine coordinates
- * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
- * happens.
- *
- * We use bitwise operations to avoid potential side-channels introduced by
- * the short-circuiting behaviour of boolean operators.
- */
- x_equal = felem_is_zero(ftmp);
- y_equal = felem_is_zero(ftmp3);
- /*
- * The special case of either point being the point at infinity (z1 and/or
- * z2 are zero), is handled separately later on in this function, so we
- * avoid jumping to point_double here in those special cases.
- */
- z1_is_zero = felem_is_zero(z1);
- z2_is_zero = felem_is_zero(z2);
- /*
- * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
- * specific implementation `felem_is_zero()` returns truth as `0x1`
- * (rather than `0xff..ff`).
- *
- * This implies that `~true` in this implementation becomes
- * `0xff..fe` (rather than `0x0`): for this reason, to be used in
- * the if expression, we mask out only the last bit in the next
- * line.
- */
- points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
- if (points_equal) {
- /*
- * This is obviously not constant-time but, as mentioned before, this
- * case never happens during single point multiplication, so there is no
- * timing leak for ECDH or ECDSA signing.
- */
- point_double(x3, y3, z3, x1, y1, z1);
- return;
- }
- /* ftmp5 = z1*z2 */
- if (!mixed) {
- felem_mul(tmp, z1, z2);
- felem_reduce(ftmp5, tmp);
- } else {
- /* special case z2 = 0 is handled later */
- felem_assign(ftmp5, z1);
- }
- /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
- felem_mul(tmp, ftmp, ftmp5);
- felem_reduce(z_out, tmp);
- /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
- felem_assign(ftmp5, ftmp);
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp);
- /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
- felem_mul(tmp, ftmp, ftmp5);
- felem_reduce(ftmp5, tmp);
- /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
- felem_mul(tmp, ftmp2, ftmp);
- felem_reduce(ftmp2, tmp);
- /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
- felem_mul(tmp, ftmp4, ftmp5);
- /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
- /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
- felem_square(tmp2, ftmp3);
- /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
- /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
- felem_diff_128_64(tmp2, ftmp5);
- /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
- /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
- felem_assign(ftmp5, ftmp2);
- felem_scalar(ftmp5, 2);
- /* ftmp5[i] < 2 * 2^57 = 2^58 */
- /*-
- * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
- * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
- */
- felem_diff_128_64(tmp2, ftmp5);
- /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
- felem_reduce(x_out, tmp2);
- /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
- felem_diff(ftmp2, x_out);
- /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
- /*
- * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
- */
- felem_mul(tmp2, ftmp3, ftmp2);
- /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
- /*-
- * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
- * z2^3*y1*(z1^2*x2 - z2^2*x1)^3
- */
- widefelem_diff(tmp2, tmp);
- /* tmp2[i] < 2^118 + 2^120 < 2^121 */
- felem_reduce(y_out, tmp2);
- /*
- * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
- * the point at infinity, so we need to check for this separately
- */
- /*
- * if point 1 is at infinity, copy point 2 to output, and vice versa
- */
- copy_conditional(x_out, x2, z1_is_zero);
- copy_conditional(x_out, x1, z2_is_zero);
- copy_conditional(y_out, y2, z1_is_zero);
- copy_conditional(y_out, y1, z2_is_zero);
- copy_conditional(z_out, z2, z1_is_zero);
- copy_conditional(z_out, z1, z2_is_zero);
- felem_assign(x3, x_out);
- felem_assign(y3, y_out);
- felem_assign(z3, z_out);
- }
- /*
- * select_point selects the |idx|th point from a precomputation table and
- * copies it to out.
- * The pre_comp array argument should be size of |size| argument
- */
- static void select_point(const u64 idx, unsigned int size,
- const felem pre_comp[][3], felem out[3])
- {
- unsigned i, j;
- limb *outlimbs = &out[0][0];
- memset(out, 0, sizeof(*out) * 3);
- for (i = 0; i < size; i++) {
- const limb *inlimbs = &pre_comp[i][0][0];
- u64 mask = i ^ idx;
- mask |= mask >> 4;
- mask |= mask >> 2;
- mask |= mask >> 1;
- mask &= 1;
- mask--;
- for (j = 0; j < 4 * 3; j++)
- outlimbs[j] |= inlimbs[j] & mask;
- }
- }
- /* get_bit returns the |i|th bit in |in| */
- static char get_bit(const felem_bytearray in, unsigned i)
- {
- if (i >= 224)
- return 0;
- return (in[i >> 3] >> (i & 7)) & 1;
- }
- /*
- * Interleaved point multiplication using precomputed point multiples: The
- * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
- * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
- * generator, using certain (large) precomputed multiples in g_pre_comp.
- * Output point (X, Y, Z) is stored in x_out, y_out, z_out
- */
- static void batch_mul(felem x_out, felem y_out, felem z_out,
- const felem_bytearray scalars[],
- const unsigned num_points, const u8 *g_scalar,
- const int mixed, const felem pre_comp[][17][3],
- const felem g_pre_comp[2][16][3])
- {
- int i, skip;
- unsigned num;
- unsigned gen_mul = (g_scalar != NULL);
- felem nq[3], tmp[4];
- u64 bits;
- u8 sign, digit;
- /* set nq to the point at infinity */
- memset(nq, 0, sizeof(nq));
- /*
- * Loop over all scalars msb-to-lsb, interleaving additions of multiples
- * of the generator (two in each of the last 28 rounds) and additions of
- * other points multiples (every 5th round).
- */
- skip = 1; /* save two point operations in the first
- * round */
- for (i = (num_points ? 220 : 27); i >= 0; --i) {
- /* double */
- if (!skip)
- point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
- /* add multiples of the generator */
- if (gen_mul && (i <= 27)) {
- /* first, look 28 bits upwards */
- bits = get_bit(g_scalar, i + 196) << 3;
- bits |= get_bit(g_scalar, i + 140) << 2;
- bits |= get_bit(g_scalar, i + 84) << 1;
- bits |= get_bit(g_scalar, i + 28);
- /* select the point to add, in constant time */
- select_point(bits, 16, g_pre_comp[1], tmp);
- if (!skip) {
- /* value 1 below is argument for "mixed" */
- point_add(nq[0], nq[1], nq[2],
- nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
- } else {
- memcpy(nq, tmp, 3 * sizeof(felem));
- skip = 0;
- }
- /* second, look at the current position */
- bits = get_bit(g_scalar, i + 168) << 3;
- bits |= get_bit(g_scalar, i + 112) << 2;
- bits |= get_bit(g_scalar, i + 56) << 1;
- bits |= get_bit(g_scalar, i);
- /* select the point to add, in constant time */
- select_point(bits, 16, g_pre_comp[0], tmp);
- point_add(nq[0], nq[1], nq[2],
- nq[0], nq[1], nq[2],
- 1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
- }
- /* do other additions every 5 doublings */
- if (num_points && (i % 5 == 0)) {
- /* loop over all scalars */
- for (num = 0; num < num_points; ++num) {
- bits = get_bit(scalars[num], i + 4) << 5;
- bits |= get_bit(scalars[num], i + 3) << 4;
- bits |= get_bit(scalars[num], i + 2) << 3;
- bits |= get_bit(scalars[num], i + 1) << 2;
- bits |= get_bit(scalars[num], i) << 1;
- bits |= get_bit(scalars[num], i - 1);
- ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
- /* select the point to add or subtract */
- select_point(digit, 17, pre_comp[num], tmp);
- felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
- * point */
- copy_conditional(tmp[1], tmp[3], sign);
- if (!skip) {
- point_add(nq[0], nq[1], nq[2],
- nq[0], nq[1], nq[2],
- mixed, tmp[0], tmp[1], tmp[2]);
- } else {
- memcpy(nq, tmp, 3 * sizeof(felem));
- skip = 0;
- }
- }
- }
- }
- felem_assign(x_out, nq[0]);
- felem_assign(y_out, nq[1]);
- felem_assign(z_out, nq[2]);
- }
- /******************************************************************************/
- /*
- * FUNCTIONS TO MANAGE PRECOMPUTATION
- */
- static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
- {
- NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
- if (!ret) {
- ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
- return ret;
- }
- ret->references = 1;
- ret->lock = CRYPTO_THREAD_lock_new();
- if (ret->lock == NULL) {
- ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
- OPENSSL_free(ret);
- return NULL;
- }
- return ret;
- }
- NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
- {
- int i;
- if (p != NULL)
- CRYPTO_UP_REF(&p->references, &i, p->lock);
- return p;
- }
- void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
- {
- int i;
- if (p == NULL)
- return;
- CRYPTO_DOWN_REF(&p->references, &i, p->lock);
- REF_PRINT_COUNT("EC_nistp224", x);
- if (i > 0)
- return;
- REF_ASSERT_ISNT(i < 0);
- CRYPTO_THREAD_lock_free(p->lock);
- OPENSSL_free(p);
- }
- /******************************************************************************/
- /*
- * OPENSSL EC_METHOD FUNCTIONS
- */
- int ec_GFp_nistp224_group_init(EC_GROUP *group)
- {
- int ret;
- ret = ec_GFp_simple_group_init(group);
- group->a_is_minus3 = 1;
- return ret;
- }
- int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
- const BIGNUM *a, const BIGNUM *b,
- BN_CTX *ctx)
- {
- int ret = 0;
- BN_CTX *new_ctx = NULL;
- BIGNUM *curve_p, *curve_a, *curve_b;
- if (ctx == NULL)
- if ((ctx = new_ctx = BN_CTX_new()) == NULL)
- return 0;
- BN_CTX_start(ctx);
- curve_p = BN_CTX_get(ctx);
- curve_a = BN_CTX_get(ctx);
- curve_b = BN_CTX_get(ctx);
- if (curve_b == NULL)
- goto err;
- BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
- BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
- BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
- if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
- ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
- EC_R_WRONG_CURVE_PARAMETERS);
- goto err;
- }
- group->field_mod_func = BN_nist_mod_224;
- ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- /*
- * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
- * (X/Z^2, Y/Z^3)
- */
- int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y,
- BN_CTX *ctx)
- {
- felem z1, z2, x_in, y_in, x_out, y_out;
- widefelem tmp;
- if (EC_POINT_is_at_infinity(group, point)) {
- ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
- EC_R_POINT_AT_INFINITY);
- return 0;
- }
- if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
- (!BN_to_felem(z1, point->Z)))
- return 0;
- felem_inv(z2, z1);
- felem_square(tmp, z2);
- felem_reduce(z1, tmp);
- felem_mul(tmp, x_in, z1);
- felem_reduce(x_in, tmp);
- felem_contract(x_out, x_in);
- if (x != NULL) {
- if (!felem_to_BN(x, x_out)) {
- ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
- ERR_R_BN_LIB);
- return 0;
- }
- }
- felem_mul(tmp, z1, z2);
- felem_reduce(z1, tmp);
- felem_mul(tmp, y_in, z1);
- felem_reduce(y_in, tmp);
- felem_contract(y_out, y_in);
- if (y != NULL) {
- if (!felem_to_BN(y, y_out)) {
- ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
- ERR_R_BN_LIB);
- return 0;
- }
- }
- return 1;
- }
- static void make_points_affine(size_t num, felem points[ /* num */ ][3],
- felem tmp_felems[ /* num+1 */ ])
- {
- /*
- * Runs in constant time, unless an input is the point at infinity (which
- * normally shouldn't happen).
- */
- ec_GFp_nistp_points_make_affine_internal(num,
- points,
- sizeof(felem),
- tmp_felems,
- (void (*)(void *))felem_one,
- felem_is_zero_int,
- (void (*)(void *, const void *))
- felem_assign,
- (void (*)(void *, const void *))
- felem_square_reduce, (void (*)
- (void *,
- const void
- *,
- const void
- *))
- felem_mul_reduce,
- (void (*)(void *, const void *))
- felem_inv,
- (void (*)(void *, const void *))
- felem_contract);
- }
- /*
- * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
- * values Result is stored in r (r can equal one of the inputs).
- */
- int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
- const BIGNUM *scalar, size_t num,
- const EC_POINT *points[],
- const BIGNUM *scalars[], BN_CTX *ctx)
- {
- int ret = 0;
- int j;
- unsigned i;
- int mixed = 0;
- BIGNUM *x, *y, *z, *tmp_scalar;
- felem_bytearray g_secret;
- felem_bytearray *secrets = NULL;
- felem (*pre_comp)[17][3] = NULL;
- felem *tmp_felems = NULL;
- int num_bytes;
- int have_pre_comp = 0;
- size_t num_points = num;
- felem x_in, y_in, z_in, x_out, y_out, z_out;
- NISTP224_PRE_COMP *pre = NULL;
- const felem(*g_pre_comp)[16][3] = NULL;
- EC_POINT *generator = NULL;
- const EC_POINT *p = NULL;
- const BIGNUM *p_scalar = NULL;
- BN_CTX_start(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- z = BN_CTX_get(ctx);
- tmp_scalar = BN_CTX_get(ctx);
- if (tmp_scalar == NULL)
- goto err;
- if (scalar != NULL) {
- pre = group->pre_comp.nistp224;
- if (pre)
- /* we have precomputation, try to use it */
- g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
- else
- /* try to use the standard precomputation */
- g_pre_comp = &gmul[0];
- generator = EC_POINT_new(group);
- if (generator == NULL)
- goto err;
- /* get the generator from precomputation */
- if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
- !felem_to_BN(y, g_pre_comp[0][1][1]) ||
- !felem_to_BN(z, g_pre_comp[0][1][2])) {
- ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
- generator, x, y, z,
- ctx))
- goto err;
- if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
- /* precomputation matches generator */
- have_pre_comp = 1;
- else
- /*
- * we don't have valid precomputation: treat the generator as a
- * random point
- */
- num_points = num_points + 1;
- }
- if (num_points > 0) {
- if (num_points >= 3) {
- /*
- * unless we precompute multiples for just one or two points,
- * converting those into affine form is time well spent
- */
- mixed = 1;
- }
- secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
- pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
- if (mixed)
- tmp_felems =
- OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
- if ((secrets == NULL) || (pre_comp == NULL)
- || (mixed && (tmp_felems == NULL))) {
- ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- /*
- * we treat NULL scalars as 0, and NULL points as points at infinity,
- * i.e., they contribute nothing to the linear combination
- */
- for (i = 0; i < num_points; ++i) {
- if (i == num) {
- /* the generator */
- p = EC_GROUP_get0_generator(group);
- p_scalar = scalar;
- } else {
- /* the i^th point */
- p = points[i];
- p_scalar = scalars[i];
- }
- if ((p_scalar != NULL) && (p != NULL)) {
- /* reduce scalar to 0 <= scalar < 2^224 */
- if ((BN_num_bits(p_scalar) > 224)
- || (BN_is_negative(p_scalar))) {
- /*
- * this is an unusual input, and we don't guarantee
- * constant-timeness
- */
- if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
- ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- num_bytes = BN_bn2lebinpad(tmp_scalar,
- secrets[i], sizeof(secrets[i]));
- } else {
- num_bytes = BN_bn2lebinpad(p_scalar,
- secrets[i], sizeof(secrets[i]));
- }
- if (num_bytes < 0) {
- ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- /* precompute multiples */
- if ((!BN_to_felem(x_out, p->X)) ||
- (!BN_to_felem(y_out, p->Y)) ||
- (!BN_to_felem(z_out, p->Z)))
- goto err;
- felem_assign(pre_comp[i][1][0], x_out);
- felem_assign(pre_comp[i][1][1], y_out);
- felem_assign(pre_comp[i][1][2], z_out);
- for (j = 2; j <= 16; ++j) {
- if (j & 1) {
- point_add(pre_comp[i][j][0], pre_comp[i][j][1],
- pre_comp[i][j][2], pre_comp[i][1][0],
- pre_comp[i][1][1], pre_comp[i][1][2], 0,
- pre_comp[i][j - 1][0],
- pre_comp[i][j - 1][1],
- pre_comp[i][j - 1][2]);
- } else {
- point_double(pre_comp[i][j][0], pre_comp[i][j][1],
- pre_comp[i][j][2], pre_comp[i][j / 2][0],
- pre_comp[i][j / 2][1],
- pre_comp[i][j / 2][2]);
- }
- }
- }
- }
- if (mixed)
- make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
- }
- /* the scalar for the generator */
- if ((scalar != NULL) && (have_pre_comp)) {
- memset(g_secret, 0, sizeof(g_secret));
- /* reduce scalar to 0 <= scalar < 2^224 */
- if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
- /*
- * this is an unusual input, and we don't guarantee
- * constant-timeness
- */
- if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
- ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
- } else {
- num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
- }
- /* do the multiplication with generator precomputation */
- batch_mul(x_out, y_out, z_out,
- (const felem_bytearray(*))secrets, num_points,
- g_secret,
- mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
- } else {
- /* do the multiplication without generator precomputation */
- batch_mul(x_out, y_out, z_out,
- (const felem_bytearray(*))secrets, num_points,
- NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
- }
- /* reduce the output to its unique minimal representation */
- felem_contract(x_in, x_out);
- felem_contract(y_in, y_out);
- felem_contract(z_in, z_out);
- if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
- (!felem_to_BN(z, z_in))) {
- ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
- err:
- BN_CTX_end(ctx);
- EC_POINT_free(generator);
- OPENSSL_free(secrets);
- OPENSSL_free(pre_comp);
- OPENSSL_free(tmp_felems);
- return ret;
- }
- int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
- {
- int ret = 0;
- NISTP224_PRE_COMP *pre = NULL;
- int i, j;
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y;
- EC_POINT *generator = NULL;
- felem tmp_felems[32];
- /* throw away old precomputation */
- EC_pre_comp_free(group);
- if (ctx == NULL)
- if ((ctx = new_ctx = BN_CTX_new()) == NULL)
- return 0;
- BN_CTX_start(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- if (y == NULL)
- goto err;
- /* get the generator */
- if (group->generator == NULL)
- goto err;
- generator = EC_POINT_new(group);
- if (generator == NULL)
- goto err;
- BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
- BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
- if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
- goto err;
- if ((pre = nistp224_pre_comp_new()) == NULL)
- goto err;
- /*
- * if the generator is the standard one, use built-in precomputation
- */
- if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
- memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
- goto done;
- }
- if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
- (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
- (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
- goto err;
- /*
- * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
- * 2^140*G, 2^196*G for the second one
- */
- for (i = 1; i <= 8; i <<= 1) {
- point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
- pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
- pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
- for (j = 0; j < 27; ++j) {
- point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
- pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
- pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
- }
- if (i == 8)
- break;
- point_double(pre->g_pre_comp[0][2 * i][0],
- pre->g_pre_comp[0][2 * i][1],
- pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
- pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
- for (j = 0; j < 27; ++j) {
- point_double(pre->g_pre_comp[0][2 * i][0],
- pre->g_pre_comp[0][2 * i][1],
- pre->g_pre_comp[0][2 * i][2],
- pre->g_pre_comp[0][2 * i][0],
- pre->g_pre_comp[0][2 * i][1],
- pre->g_pre_comp[0][2 * i][2]);
- }
- }
- for (i = 0; i < 2; i++) {
- /* g_pre_comp[i][0] is the point at infinity */
- memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
- /* the remaining multiples */
- /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
- point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
- pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
- pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
- 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
- pre->g_pre_comp[i][2][2]);
- /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
- point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
- pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
- pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
- 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
- pre->g_pre_comp[i][2][2]);
- /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
- point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
- pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
- pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
- 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
- pre->g_pre_comp[i][4][2]);
- /*
- * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
- */
- point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
- pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
- pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
- 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
- pre->g_pre_comp[i][2][2]);
- for (j = 1; j < 8; ++j) {
- /* odd multiples: add G resp. 2^28*G */
- point_add(pre->g_pre_comp[i][2 * j + 1][0],
- pre->g_pre_comp[i][2 * j + 1][1],
- pre->g_pre_comp[i][2 * j + 1][2],
- pre->g_pre_comp[i][2 * j][0],
- pre->g_pre_comp[i][2 * j][1],
- pre->g_pre_comp[i][2 * j][2], 0,
- pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
- pre->g_pre_comp[i][1][2]);
- }
- }
- make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
- done:
- SETPRECOMP(group, nistp224, pre);
- pre = NULL;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- EC_POINT_free(generator);
- BN_CTX_free(new_ctx);
- EC_nistp224_pre_comp_free(pre);
- return ret;
- }
- int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
- {
- return HAVEPRECOMP(group, nistp224);
- }
- #endif
|