12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366 |
- /*
- * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- /* Copyright 2011 Google Inc.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- *
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
- *
- * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
- * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
- * work which got its smarts from Daniel J. Bernstein's work on the same.
- */
- #include <openssl/opensslconf.h>
- #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
- NON_EMPTY_TRANSLATION_UNIT
- #else
- # include <stdint.h>
- # include <string.h>
- # include <openssl/err.h>
- # include "ec_local.h"
- # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
- /* even with gcc, the typedef won't work for 32-bit platforms */
- typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit
- * platforms */
- typedef __int128_t int128_t;
- # else
- # error "Your compiler doesn't appear to support 128-bit integer types"
- # endif
- typedef uint8_t u8;
- typedef uint32_t u32;
- typedef uint64_t u64;
- /*
- * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
- * can serialise an element of this field into 32 bytes. We call this an
- * felem_bytearray.
- */
- typedef u8 felem_bytearray[32];
- /*
- * These are the parameters of P256, taken from FIPS 186-3, page 86. These
- * values are big-endian.
- */
- static const felem_bytearray nistp256_curve_params[5] = {
- {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
- {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc},
- {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, /* b */
- 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
- 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
- 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
- {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
- 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
- 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
- 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
- {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
- 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
- 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
- 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
- };
- /*-
- * The representation of field elements.
- * ------------------------------------
- *
- * We represent field elements with either four 128-bit values, eight 128-bit
- * values, or four 64-bit values. The field element represented is:
- * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p)
- * or:
- * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p)
- *
- * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
- * apart, but are 128-bits wide, the most significant bits of each limb overlap
- * with the least significant bits of the next.
- *
- * A field element with four limbs is an 'felem'. One with eight limbs is a
- * 'longfelem'
- *
- * A field element with four, 64-bit values is called a 'smallfelem'. Small
- * values are used as intermediate values before multiplication.
- */
- # define NLIMBS 4
- typedef uint128_t limb;
- typedef limb felem[NLIMBS];
- typedef limb longfelem[NLIMBS * 2];
- typedef u64 smallfelem[NLIMBS];
- /* This is the value of the prime as four 64-bit words, little-endian. */
- static const u64 kPrime[4] =
- { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
- static const u64 bottom63bits = 0x7ffffffffffffffful;
- /*
- * bin32_to_felem takes a little-endian byte array and converts it into felem
- * form. This assumes that the CPU is little-endian.
- */
- static void bin32_to_felem(felem out, const u8 in[32])
- {
- out[0] = *((u64 *)&in[0]);
- out[1] = *((u64 *)&in[8]);
- out[2] = *((u64 *)&in[16]);
- out[3] = *((u64 *)&in[24]);
- }
- /*
- * smallfelem_to_bin32 takes a smallfelem and serialises into a little
- * endian, 32 byte array. This assumes that the CPU is little-endian.
- */
- static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
- {
- *((u64 *)&out[0]) = in[0];
- *((u64 *)&out[8]) = in[1];
- *((u64 *)&out[16]) = in[2];
- *((u64 *)&out[24]) = in[3];
- }
- /* BN_to_felem converts an OpenSSL BIGNUM into an felem */
- static int BN_to_felem(felem out, const BIGNUM *bn)
- {
- felem_bytearray b_out;
- int num_bytes;
- if (BN_is_negative(bn)) {
- ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
- return 0;
- }
- num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
- if (num_bytes < 0) {
- ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
- return 0;
- }
- bin32_to_felem(out, b_out);
- return 1;
- }
- /* felem_to_BN converts an felem into an OpenSSL BIGNUM */
- static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
- {
- felem_bytearray b_out;
- smallfelem_to_bin32(b_out, in);
- return BN_lebin2bn(b_out, sizeof(b_out), out);
- }
- /*-
- * Field operations
- * ----------------
- */
- static void smallfelem_one(smallfelem out)
- {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- }
- static void smallfelem_assign(smallfelem out, const smallfelem in)
- {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = in[2];
- out[3] = in[3];
- }
- static void felem_assign(felem out, const felem in)
- {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = in[2];
- out[3] = in[3];
- }
- /* felem_sum sets out = out + in. */
- static void felem_sum(felem out, const felem in)
- {
- out[0] += in[0];
- out[1] += in[1];
- out[2] += in[2];
- out[3] += in[3];
- }
- /* felem_small_sum sets out = out + in. */
- static void felem_small_sum(felem out, const smallfelem in)
- {
- out[0] += in[0];
- out[1] += in[1];
- out[2] += in[2];
- out[3] += in[3];
- }
- /* felem_scalar sets out = out * scalar */
- static void felem_scalar(felem out, const u64 scalar)
- {
- out[0] *= scalar;
- out[1] *= scalar;
- out[2] *= scalar;
- out[3] *= scalar;
- }
- /* longfelem_scalar sets out = out * scalar */
- static void longfelem_scalar(longfelem out, const u64 scalar)
- {
- out[0] *= scalar;
- out[1] *= scalar;
- out[2] *= scalar;
- out[3] *= scalar;
- out[4] *= scalar;
- out[5] *= scalar;
- out[6] *= scalar;
- out[7] *= scalar;
- }
- # define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
- # define two105 (((limb)1) << 105)
- # define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
- /* zero105 is 0 mod p */
- static const felem zero105 =
- { two105m41m9, two105, two105m41p9, two105m41p9 };
- /*-
- * smallfelem_neg sets |out| to |-small|
- * On exit:
- * out[i] < out[i] + 2^105
- */
- static void smallfelem_neg(felem out, const smallfelem small)
- {
- /* In order to prevent underflow, we subtract from 0 mod p. */
- out[0] = zero105[0] - small[0];
- out[1] = zero105[1] - small[1];
- out[2] = zero105[2] - small[2];
- out[3] = zero105[3] - small[3];
- }
- /*-
- * felem_diff subtracts |in| from |out|
- * On entry:
- * in[i] < 2^104
- * On exit:
- * out[i] < out[i] + 2^105
- */
- static void felem_diff(felem out, const felem in)
- {
- /*
- * In order to prevent underflow, we add 0 mod p before subtracting.
- */
- out[0] += zero105[0];
- out[1] += zero105[1];
- out[2] += zero105[2];
- out[3] += zero105[3];
- out[0] -= in[0];
- out[1] -= in[1];
- out[2] -= in[2];
- out[3] -= in[3];
- }
- # define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
- # define two107 (((limb)1) << 107)
- # define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
- /* zero107 is 0 mod p */
- static const felem zero107 =
- { two107m43m11, two107, two107m43p11, two107m43p11 };
- /*-
- * An alternative felem_diff for larger inputs |in|
- * felem_diff_zero107 subtracts |in| from |out|
- * On entry:
- * in[i] < 2^106
- * On exit:
- * out[i] < out[i] + 2^107
- */
- static void felem_diff_zero107(felem out, const felem in)
- {
- /*
- * In order to prevent underflow, we add 0 mod p before subtracting.
- */
- out[0] += zero107[0];
- out[1] += zero107[1];
- out[2] += zero107[2];
- out[3] += zero107[3];
- out[0] -= in[0];
- out[1] -= in[1];
- out[2] -= in[2];
- out[3] -= in[3];
- }
- /*-
- * longfelem_diff subtracts |in| from |out|
- * On entry:
- * in[i] < 7*2^67
- * On exit:
- * out[i] < out[i] + 2^70 + 2^40
- */
- static void longfelem_diff(longfelem out, const longfelem in)
- {
- static const limb two70m8p6 =
- (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6);
- static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40);
- static const limb two70 = (((limb) 1) << 70);
- static const limb two70m40m38p6 =
- (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) +
- (((limb) 1) << 6);
- static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6);
- /* add 0 mod p to avoid underflow */
- out[0] += two70m8p6;
- out[1] += two70p40;
- out[2] += two70;
- out[3] += two70m40m38p6;
- out[4] += two70m6;
- out[5] += two70m6;
- out[6] += two70m6;
- out[7] += two70m6;
- /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
- out[0] -= in[0];
- out[1] -= in[1];
- out[2] -= in[2];
- out[3] -= in[3];
- out[4] -= in[4];
- out[5] -= in[5];
- out[6] -= in[6];
- out[7] -= in[7];
- }
- # define two64m0 (((limb)1) << 64) - 1
- # define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
- # define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
- # define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
- /* zero110 is 0 mod p */
- static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
- /*-
- * felem_shrink converts an felem into a smallfelem. The result isn't quite
- * minimal as the value may be greater than p.
- *
- * On entry:
- * in[i] < 2^109
- * On exit:
- * out[i] < 2^64
- */
- static void felem_shrink(smallfelem out, const felem in)
- {
- felem tmp;
- u64 a, b, mask;
- u64 high, low;
- static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
- /* Carry 2->3 */
- tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
- /* tmp[3] < 2^110 */
- tmp[2] = zero110[2] + (u64)in[2];
- tmp[0] = zero110[0] + in[0];
- tmp[1] = zero110[1] + in[1];
- /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
- /*
- * We perform two partial reductions where we eliminate the high-word of
- * tmp[3]. We don't update the other words till the end.
- */
- a = tmp[3] >> 64; /* a < 2^46 */
- tmp[3] = (u64)tmp[3];
- tmp[3] -= a;
- tmp[3] += ((limb) a) << 32;
- /* tmp[3] < 2^79 */
- b = a;
- a = tmp[3] >> 64; /* a < 2^15 */
- b += a; /* b < 2^46 + 2^15 < 2^47 */
- tmp[3] = (u64)tmp[3];
- tmp[3] -= a;
- tmp[3] += ((limb) a) << 32;
- /* tmp[3] < 2^64 + 2^47 */
- /*
- * This adjusts the other two words to complete the two partial
- * reductions.
- */
- tmp[0] += b;
- tmp[1] -= (((limb) b) << 32);
- /*
- * In order to make space in tmp[3] for the carry from 2 -> 3, we
- * conditionally subtract kPrime if tmp[3] is large enough.
- */
- high = (u64)(tmp[3] >> 64);
- /* As tmp[3] < 2^65, high is either 1 or 0 */
- high = 0 - high;
- /*-
- * high is:
- * all ones if the high word of tmp[3] is 1
- * all zeros if the high word of tmp[3] if 0
- */
- low = (u64)tmp[3];
- mask = 0 - (low >> 63);
- /*-
- * mask is:
- * all ones if the MSB of low is 1
- * all zeros if the MSB of low if 0
- */
- low &= bottom63bits;
- low -= kPrime3Test;
- /* if low was greater than kPrime3Test then the MSB is zero */
- low = ~low;
- low = 0 - (low >> 63);
- /*-
- * low is:
- * all ones if low was > kPrime3Test
- * all zeros if low was <= kPrime3Test
- */
- mask = (mask & low) | high;
- tmp[0] -= mask & kPrime[0];
- tmp[1] -= mask & kPrime[1];
- /* kPrime[2] is zero, so omitted */
- tmp[3] -= mask & kPrime[3];
- /* tmp[3] < 2**64 - 2**32 + 1 */
- tmp[1] += ((u64)(tmp[0] >> 64));
- tmp[0] = (u64)tmp[0];
- tmp[2] += ((u64)(tmp[1] >> 64));
- tmp[1] = (u64)tmp[1];
- tmp[3] += ((u64)(tmp[2] >> 64));
- tmp[2] = (u64)tmp[2];
- /* tmp[i] < 2^64 */
- out[0] = tmp[0];
- out[1] = tmp[1];
- out[2] = tmp[2];
- out[3] = tmp[3];
- }
- /* smallfelem_expand converts a smallfelem to an felem */
- static void smallfelem_expand(felem out, const smallfelem in)
- {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = in[2];
- out[3] = in[3];
- }
- /*-
- * smallfelem_square sets |out| = |small|^2
- * On entry:
- * small[i] < 2^64
- * On exit:
- * out[i] < 7 * 2^64 < 2^67
- */
- static void smallfelem_square(longfelem out, const smallfelem small)
- {
- limb a;
- u64 high, low;
- a = ((uint128_t) small[0]) * small[0];
- low = a;
- high = a >> 64;
- out[0] = low;
- out[1] = high;
- a = ((uint128_t) small[0]) * small[1];
- low = a;
- high = a >> 64;
- out[1] += low;
- out[1] += low;
- out[2] = high;
- a = ((uint128_t) small[0]) * small[2];
- low = a;
- high = a >> 64;
- out[2] += low;
- out[2] *= 2;
- out[3] = high;
- a = ((uint128_t) small[0]) * small[3];
- low = a;
- high = a >> 64;
- out[3] += low;
- out[4] = high;
- a = ((uint128_t) small[1]) * small[2];
- low = a;
- high = a >> 64;
- out[3] += low;
- out[3] *= 2;
- out[4] += high;
- a = ((uint128_t) small[1]) * small[1];
- low = a;
- high = a >> 64;
- out[2] += low;
- out[3] += high;
- a = ((uint128_t) small[1]) * small[3];
- low = a;
- high = a >> 64;
- out[4] += low;
- out[4] *= 2;
- out[5] = high;
- a = ((uint128_t) small[2]) * small[3];
- low = a;
- high = a >> 64;
- out[5] += low;
- out[5] *= 2;
- out[6] = high;
- out[6] += high;
- a = ((uint128_t) small[2]) * small[2];
- low = a;
- high = a >> 64;
- out[4] += low;
- out[5] += high;
- a = ((uint128_t) small[3]) * small[3];
- low = a;
- high = a >> 64;
- out[6] += low;
- out[7] = high;
- }
- /*-
- * felem_square sets |out| = |in|^2
- * On entry:
- * in[i] < 2^109
- * On exit:
- * out[i] < 7 * 2^64 < 2^67
- */
- static void felem_square(longfelem out, const felem in)
- {
- u64 small[4];
- felem_shrink(small, in);
- smallfelem_square(out, small);
- }
- /*-
- * smallfelem_mul sets |out| = |small1| * |small2|
- * On entry:
- * small1[i] < 2^64
- * small2[i] < 2^64
- * On exit:
- * out[i] < 7 * 2^64 < 2^67
- */
- static void smallfelem_mul(longfelem out, const smallfelem small1,
- const smallfelem small2)
- {
- limb a;
- u64 high, low;
- a = ((uint128_t) small1[0]) * small2[0];
- low = a;
- high = a >> 64;
- out[0] = low;
- out[1] = high;
- a = ((uint128_t) small1[0]) * small2[1];
- low = a;
- high = a >> 64;
- out[1] += low;
- out[2] = high;
- a = ((uint128_t) small1[1]) * small2[0];
- low = a;
- high = a >> 64;
- out[1] += low;
- out[2] += high;
- a = ((uint128_t) small1[0]) * small2[2];
- low = a;
- high = a >> 64;
- out[2] += low;
- out[3] = high;
- a = ((uint128_t) small1[1]) * small2[1];
- low = a;
- high = a >> 64;
- out[2] += low;
- out[3] += high;
- a = ((uint128_t) small1[2]) * small2[0];
- low = a;
- high = a >> 64;
- out[2] += low;
- out[3] += high;
- a = ((uint128_t) small1[0]) * small2[3];
- low = a;
- high = a >> 64;
- out[3] += low;
- out[4] = high;
- a = ((uint128_t) small1[1]) * small2[2];
- low = a;
- high = a >> 64;
- out[3] += low;
- out[4] += high;
- a = ((uint128_t) small1[2]) * small2[1];
- low = a;
- high = a >> 64;
- out[3] += low;
- out[4] += high;
- a = ((uint128_t) small1[3]) * small2[0];
- low = a;
- high = a >> 64;
- out[3] += low;
- out[4] += high;
- a = ((uint128_t) small1[1]) * small2[3];
- low = a;
- high = a >> 64;
- out[4] += low;
- out[5] = high;
- a = ((uint128_t) small1[2]) * small2[2];
- low = a;
- high = a >> 64;
- out[4] += low;
- out[5] += high;
- a = ((uint128_t) small1[3]) * small2[1];
- low = a;
- high = a >> 64;
- out[4] += low;
- out[5] += high;
- a = ((uint128_t) small1[2]) * small2[3];
- low = a;
- high = a >> 64;
- out[5] += low;
- out[6] = high;
- a = ((uint128_t) small1[3]) * small2[2];
- low = a;
- high = a >> 64;
- out[5] += low;
- out[6] += high;
- a = ((uint128_t) small1[3]) * small2[3];
- low = a;
- high = a >> 64;
- out[6] += low;
- out[7] = high;
- }
- /*-
- * felem_mul sets |out| = |in1| * |in2|
- * On entry:
- * in1[i] < 2^109
- * in2[i] < 2^109
- * On exit:
- * out[i] < 7 * 2^64 < 2^67
- */
- static void felem_mul(longfelem out, const felem in1, const felem in2)
- {
- smallfelem small1, small2;
- felem_shrink(small1, in1);
- felem_shrink(small2, in2);
- smallfelem_mul(out, small1, small2);
- }
- /*-
- * felem_small_mul sets |out| = |small1| * |in2|
- * On entry:
- * small1[i] < 2^64
- * in2[i] < 2^109
- * On exit:
- * out[i] < 7 * 2^64 < 2^67
- */
- static void felem_small_mul(longfelem out, const smallfelem small1,
- const felem in2)
- {
- smallfelem small2;
- felem_shrink(small2, in2);
- smallfelem_mul(out, small1, small2);
- }
- # define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
- # define two100 (((limb)1) << 100)
- # define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
- /* zero100 is 0 mod p */
- static const felem zero100 =
- { two100m36m4, two100, two100m36p4, two100m36p4 };
- /*-
- * Internal function for the different flavours of felem_reduce.
- * felem_reduce_ reduces the higher coefficients in[4]-in[7].
- * On entry:
- * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
- * out[1] >= in[7] + 2^32*in[4]
- * out[2] >= in[5] + 2^32*in[5]
- * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
- * On exit:
- * out[0] <= out[0] + in[4] + 2^32*in[5]
- * out[1] <= out[1] + in[5] + 2^33*in[6]
- * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
- * out[3] <= out[3] + 2^32*in[4] + 3*in[7]
- */
- static void felem_reduce_(felem out, const longfelem in)
- {
- int128_t c;
- /* combine common terms from below */
- c = in[4] + (in[5] << 32);
- out[0] += c;
- out[3] -= c;
- c = in[5] - in[7];
- out[1] += c;
- out[2] -= c;
- /* the remaining terms */
- /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
- out[1] -= (in[4] << 32);
- out[3] += (in[4] << 32);
- /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
- out[2] -= (in[5] << 32);
- /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
- out[0] -= in[6];
- out[0] -= (in[6] << 32);
- out[1] += (in[6] << 33);
- out[2] += (in[6] * 2);
- out[3] -= (in[6] << 32);
- /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
- out[0] -= in[7];
- out[0] -= (in[7] << 32);
- out[2] += (in[7] << 33);
- out[3] += (in[7] * 3);
- }
- /*-
- * felem_reduce converts a longfelem into an felem.
- * To be called directly after felem_square or felem_mul.
- * On entry:
- * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
- * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
- * On exit:
- * out[i] < 2^101
- */
- static void felem_reduce(felem out, const longfelem in)
- {
- out[0] = zero100[0] + in[0];
- out[1] = zero100[1] + in[1];
- out[2] = zero100[2] + in[2];
- out[3] = zero100[3] + in[3];
- felem_reduce_(out, in);
- /*-
- * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
- * out[1] > 2^100 - 2^64 - 7*2^96 > 0
- * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
- * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
- *
- * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
- * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
- * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
- * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
- */
- }
- /*-
- * felem_reduce_zero105 converts a larger longfelem into an felem.
- * On entry:
- * in[0] < 2^71
- * On exit:
- * out[i] < 2^106
- */
- static void felem_reduce_zero105(felem out, const longfelem in)
- {
- out[0] = zero105[0] + in[0];
- out[1] = zero105[1] + in[1];
- out[2] = zero105[2] + in[2];
- out[3] = zero105[3] + in[3];
- felem_reduce_(out, in);
- /*-
- * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
- * out[1] > 2^105 - 2^71 - 2^103 > 0
- * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
- * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
- *
- * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
- * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
- * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
- * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
- */
- }
- /*
- * subtract_u64 sets *result = *result - v and *carry to one if the
- * subtraction underflowed.
- */
- static void subtract_u64(u64 *result, u64 *carry, u64 v)
- {
- uint128_t r = *result;
- r -= v;
- *carry = (r >> 64) & 1;
- *result = (u64)r;
- }
- /*
- * felem_contract converts |in| to its unique, minimal representation. On
- * entry: in[i] < 2^109
- */
- static void felem_contract(smallfelem out, const felem in)
- {
- unsigned i;
- u64 all_equal_so_far = 0, result = 0, carry;
- felem_shrink(out, in);
- /* small is minimal except that the value might be > p */
- all_equal_so_far--;
- /*
- * We are doing a constant time test if out >= kPrime. We need to compare
- * each u64, from most-significant to least significant. For each one, if
- * all words so far have been equal (m is all ones) then a non-equal
- * result is the answer. Otherwise we continue.
- */
- for (i = 3; i < 4; i--) {
- u64 equal;
- uint128_t a = ((uint128_t) kPrime[i]) - out[i];
- /*
- * if out[i] > kPrime[i] then a will underflow and the high 64-bits
- * will all be set.
- */
- result |= all_equal_so_far & ((u64)(a >> 64));
- /*
- * if kPrime[i] == out[i] then |equal| will be all zeros and the
- * decrement will make it all ones.
- */
- equal = kPrime[i] ^ out[i];
- equal--;
- equal &= equal << 32;
- equal &= equal << 16;
- equal &= equal << 8;
- equal &= equal << 4;
- equal &= equal << 2;
- equal &= equal << 1;
- equal = 0 - (equal >> 63);
- all_equal_so_far &= equal;
- }
- /*
- * if all_equal_so_far is still all ones then the two values are equal
- * and so out >= kPrime is true.
- */
- result |= all_equal_so_far;
- /* if out >= kPrime then we subtract kPrime. */
- subtract_u64(&out[0], &carry, result & kPrime[0]);
- subtract_u64(&out[1], &carry, carry);
- subtract_u64(&out[2], &carry, carry);
- subtract_u64(&out[3], &carry, carry);
- subtract_u64(&out[1], &carry, result & kPrime[1]);
- subtract_u64(&out[2], &carry, carry);
- subtract_u64(&out[3], &carry, carry);
- subtract_u64(&out[2], &carry, result & kPrime[2]);
- subtract_u64(&out[3], &carry, carry);
- subtract_u64(&out[3], &carry, result & kPrime[3]);
- }
- static void smallfelem_square_contract(smallfelem out, const smallfelem in)
- {
- longfelem longtmp;
- felem tmp;
- smallfelem_square(longtmp, in);
- felem_reduce(tmp, longtmp);
- felem_contract(out, tmp);
- }
- static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
- const smallfelem in2)
- {
- longfelem longtmp;
- felem tmp;
- smallfelem_mul(longtmp, in1, in2);
- felem_reduce(tmp, longtmp);
- felem_contract(out, tmp);
- }
- /*-
- * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
- * otherwise.
- * On entry:
- * small[i] < 2^64
- */
- static limb smallfelem_is_zero(const smallfelem small)
- {
- limb result;
- u64 is_p;
- u64 is_zero = small[0] | small[1] | small[2] | small[3];
- is_zero--;
- is_zero &= is_zero << 32;
- is_zero &= is_zero << 16;
- is_zero &= is_zero << 8;
- is_zero &= is_zero << 4;
- is_zero &= is_zero << 2;
- is_zero &= is_zero << 1;
- is_zero = 0 - (is_zero >> 63);
- is_p = (small[0] ^ kPrime[0]) |
- (small[1] ^ kPrime[1]) |
- (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
- is_p--;
- is_p &= is_p << 32;
- is_p &= is_p << 16;
- is_p &= is_p << 8;
- is_p &= is_p << 4;
- is_p &= is_p << 2;
- is_p &= is_p << 1;
- is_p = 0 - (is_p >> 63);
- is_zero |= is_p;
- result = is_zero;
- result |= ((limb) is_zero) << 64;
- return result;
- }
- static int smallfelem_is_zero_int(const void *small)
- {
- return (int)(smallfelem_is_zero(small) & ((limb) 1));
- }
- /*-
- * felem_inv calculates |out| = |in|^{-1}
- *
- * Based on Fermat's Little Theorem:
- * a^p = a (mod p)
- * a^{p-1} = 1 (mod p)
- * a^{p-2} = a^{-1} (mod p)
- */
- static void felem_inv(felem out, const felem in)
- {
- felem ftmp, ftmp2;
- /* each e_I will hold |in|^{2^I - 1} */
- felem e2, e4, e8, e16, e32, e64;
- longfelem tmp;
- unsigned i;
- felem_square(tmp, in);
- felem_reduce(ftmp, tmp); /* 2^1 */
- felem_mul(tmp, in, ftmp);
- felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
- felem_assign(e2, ftmp);
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */
- felem_mul(tmp, ftmp, e2);
- felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */
- felem_assign(e4, ftmp);
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */
- felem_mul(tmp, ftmp, e4);
- felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */
- felem_assign(e8, ftmp);
- for (i = 0; i < 8; i++) {
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp);
- } /* 2^16 - 2^8 */
- felem_mul(tmp, ftmp, e8);
- felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */
- felem_assign(e16, ftmp);
- for (i = 0; i < 16; i++) {
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp);
- } /* 2^32 - 2^16 */
- felem_mul(tmp, ftmp, e16);
- felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */
- felem_assign(e32, ftmp);
- for (i = 0; i < 32; i++) {
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp);
- } /* 2^64 - 2^32 */
- felem_assign(e64, ftmp);
- felem_mul(tmp, ftmp, in);
- felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */
- for (i = 0; i < 192; i++) {
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp);
- } /* 2^256 - 2^224 + 2^192 */
- felem_mul(tmp, e64, e32);
- felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */
- for (i = 0; i < 16; i++) {
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp);
- } /* 2^80 - 2^16 */
- felem_mul(tmp, ftmp2, e16);
- felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */
- for (i = 0; i < 8; i++) {
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp);
- } /* 2^88 - 2^8 */
- felem_mul(tmp, ftmp2, e8);
- felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */
- for (i = 0; i < 4; i++) {
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp);
- } /* 2^92 - 2^4 */
- felem_mul(tmp, ftmp2, e4);
- felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */
- felem_mul(tmp, ftmp2, e2);
- felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */
- felem_mul(tmp, ftmp2, in);
- felem_reduce(ftmp2, tmp); /* 2^96 - 3 */
- felem_mul(tmp, ftmp2, ftmp);
- felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
- }
- static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
- {
- felem tmp;
- smallfelem_expand(tmp, in);
- felem_inv(tmp, tmp);
- felem_contract(out, tmp);
- }
- /*-
- * Group operations
- * ----------------
- *
- * Building on top of the field operations we have the operations on the
- * elliptic curve group itself. Points on the curve are represented in Jacobian
- * coordinates
- */
- /*-
- * point_double calculates 2*(x_in, y_in, z_in)
- *
- * The method is taken from:
- * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
- *
- * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
- * while x_out == y_in is not (maybe this works, but it's not tested).
- */
- static void
- point_double(felem x_out, felem y_out, felem z_out,
- const felem x_in, const felem y_in, const felem z_in)
- {
- longfelem tmp, tmp2;
- felem delta, gamma, beta, alpha, ftmp, ftmp2;
- smallfelem small1, small2;
- felem_assign(ftmp, x_in);
- /* ftmp[i] < 2^106 */
- felem_assign(ftmp2, x_in);
- /* ftmp2[i] < 2^106 */
- /* delta = z^2 */
- felem_square(tmp, z_in);
- felem_reduce(delta, tmp);
- /* delta[i] < 2^101 */
- /* gamma = y^2 */
- felem_square(tmp, y_in);
- felem_reduce(gamma, tmp);
- /* gamma[i] < 2^101 */
- felem_shrink(small1, gamma);
- /* beta = x*gamma */
- felem_small_mul(tmp, small1, x_in);
- felem_reduce(beta, tmp);
- /* beta[i] < 2^101 */
- /* alpha = 3*(x-delta)*(x+delta) */
- felem_diff(ftmp, delta);
- /* ftmp[i] < 2^105 + 2^106 < 2^107 */
- felem_sum(ftmp2, delta);
- /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
- felem_scalar(ftmp2, 3);
- /* ftmp2[i] < 3 * 2^107 < 2^109 */
- felem_mul(tmp, ftmp, ftmp2);
- felem_reduce(alpha, tmp);
- /* alpha[i] < 2^101 */
- felem_shrink(small2, alpha);
- /* x' = alpha^2 - 8*beta */
- smallfelem_square(tmp, small2);
- felem_reduce(x_out, tmp);
- felem_assign(ftmp, beta);
- felem_scalar(ftmp, 8);
- /* ftmp[i] < 8 * 2^101 = 2^104 */
- felem_diff(x_out, ftmp);
- /* x_out[i] < 2^105 + 2^101 < 2^106 */
- /* z' = (y + z)^2 - gamma - delta */
- felem_sum(delta, gamma);
- /* delta[i] < 2^101 + 2^101 = 2^102 */
- felem_assign(ftmp, y_in);
- felem_sum(ftmp, z_in);
- /* ftmp[i] < 2^106 + 2^106 = 2^107 */
- felem_square(tmp, ftmp);
- felem_reduce(z_out, tmp);
- felem_diff(z_out, delta);
- /* z_out[i] < 2^105 + 2^101 < 2^106 */
- /* y' = alpha*(4*beta - x') - 8*gamma^2 */
- felem_scalar(beta, 4);
- /* beta[i] < 4 * 2^101 = 2^103 */
- felem_diff_zero107(beta, x_out);
- /* beta[i] < 2^107 + 2^103 < 2^108 */
- felem_small_mul(tmp, small2, beta);
- /* tmp[i] < 7 * 2^64 < 2^67 */
- smallfelem_square(tmp2, small1);
- /* tmp2[i] < 7 * 2^64 */
- longfelem_scalar(tmp2, 8);
- /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
- longfelem_diff(tmp, tmp2);
- /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
- felem_reduce_zero105(y_out, tmp);
- /* y_out[i] < 2^106 */
- }
- /*
- * point_double_small is the same as point_double, except that it operates on
- * smallfelems
- */
- static void
- point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
- const smallfelem x_in, const smallfelem y_in,
- const smallfelem z_in)
- {
- felem felem_x_out, felem_y_out, felem_z_out;
- felem felem_x_in, felem_y_in, felem_z_in;
- smallfelem_expand(felem_x_in, x_in);
- smallfelem_expand(felem_y_in, y_in);
- smallfelem_expand(felem_z_in, z_in);
- point_double(felem_x_out, felem_y_out, felem_z_out,
- felem_x_in, felem_y_in, felem_z_in);
- felem_shrink(x_out, felem_x_out);
- felem_shrink(y_out, felem_y_out);
- felem_shrink(z_out, felem_z_out);
- }
- /* copy_conditional copies in to out iff mask is all ones. */
- static void copy_conditional(felem out, const felem in, limb mask)
- {
- unsigned i;
- for (i = 0; i < NLIMBS; ++i) {
- const limb tmp = mask & (in[i] ^ out[i]);
- out[i] ^= tmp;
- }
- }
- /* copy_small_conditional copies in to out iff mask is all ones. */
- static void copy_small_conditional(felem out, const smallfelem in, limb mask)
- {
- unsigned i;
- const u64 mask64 = mask;
- for (i = 0; i < NLIMBS; ++i) {
- out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask);
- }
- }
- /*-
- * point_add calculates (x1, y1, z1) + (x2, y2, z2)
- *
- * The method is taken from:
- * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
- * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
- *
- * This function includes a branch for checking whether the two input points
- * are equal, (while not equal to the point at infinity). This case never
- * happens during single point multiplication, so there is no timing leak for
- * ECDH or ECDSA signing.
- */
- static void point_add(felem x3, felem y3, felem z3,
- const felem x1, const felem y1, const felem z1,
- const int mixed, const smallfelem x2,
- const smallfelem y2, const smallfelem z2)
- {
- felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
- longfelem tmp, tmp2;
- smallfelem small1, small2, small3, small4, small5;
- limb x_equal, y_equal, z1_is_zero, z2_is_zero;
- limb points_equal;
- felem_shrink(small3, z1);
- z1_is_zero = smallfelem_is_zero(small3);
- z2_is_zero = smallfelem_is_zero(z2);
- /* ftmp = z1z1 = z1**2 */
- smallfelem_square(tmp, small3);
- felem_reduce(ftmp, tmp);
- /* ftmp[i] < 2^101 */
- felem_shrink(small1, ftmp);
- if (!mixed) {
- /* ftmp2 = z2z2 = z2**2 */
- smallfelem_square(tmp, z2);
- felem_reduce(ftmp2, tmp);
- /* ftmp2[i] < 2^101 */
- felem_shrink(small2, ftmp2);
- felem_shrink(small5, x1);
- /* u1 = ftmp3 = x1*z2z2 */
- smallfelem_mul(tmp, small5, small2);
- felem_reduce(ftmp3, tmp);
- /* ftmp3[i] < 2^101 */
- /* ftmp5 = z1 + z2 */
- felem_assign(ftmp5, z1);
- felem_small_sum(ftmp5, z2);
- /* ftmp5[i] < 2^107 */
- /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
- felem_square(tmp, ftmp5);
- felem_reduce(ftmp5, tmp);
- /* ftmp2 = z2z2 + z1z1 */
- felem_sum(ftmp2, ftmp);
- /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
- felem_diff(ftmp5, ftmp2);
- /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
- /* ftmp2 = z2 * z2z2 */
- smallfelem_mul(tmp, small2, z2);
- felem_reduce(ftmp2, tmp);
- /* s1 = ftmp2 = y1 * z2**3 */
- felem_mul(tmp, y1, ftmp2);
- felem_reduce(ftmp6, tmp);
- /* ftmp6[i] < 2^101 */
- } else {
- /*
- * We'll assume z2 = 1 (special case z2 = 0 is handled later)
- */
- /* u1 = ftmp3 = x1*z2z2 */
- felem_assign(ftmp3, x1);
- /* ftmp3[i] < 2^106 */
- /* ftmp5 = 2z1z2 */
- felem_assign(ftmp5, z1);
- felem_scalar(ftmp5, 2);
- /* ftmp5[i] < 2*2^106 = 2^107 */
- /* s1 = ftmp2 = y1 * z2**3 */
- felem_assign(ftmp6, y1);
- /* ftmp6[i] < 2^106 */
- }
- /* u2 = x2*z1z1 */
- smallfelem_mul(tmp, x2, small1);
- felem_reduce(ftmp4, tmp);
- /* h = ftmp4 = u2 - u1 */
- felem_diff_zero107(ftmp4, ftmp3);
- /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
- felem_shrink(small4, ftmp4);
- x_equal = smallfelem_is_zero(small4);
- /* z_out = ftmp5 * h */
- felem_small_mul(tmp, small4, ftmp5);
- felem_reduce(z_out, tmp);
- /* z_out[i] < 2^101 */
- /* ftmp = z1 * z1z1 */
- smallfelem_mul(tmp, small1, small3);
- felem_reduce(ftmp, tmp);
- /* s2 = tmp = y2 * z1**3 */
- felem_small_mul(tmp, y2, ftmp);
- felem_reduce(ftmp5, tmp);
- /* r = ftmp5 = (s2 - s1)*2 */
- felem_diff_zero107(ftmp5, ftmp6);
- /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
- felem_scalar(ftmp5, 2);
- /* ftmp5[i] < 2^109 */
- felem_shrink(small1, ftmp5);
- y_equal = smallfelem_is_zero(small1);
- /*
- * The formulae are incorrect if the points are equal, in affine coordinates
- * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
- * happens.
- *
- * We use bitwise operations to avoid potential side-channels introduced by
- * the short-circuiting behaviour of boolean operators.
- *
- * The special case of either point being the point at infinity (z1 and/or
- * z2 are zero), is handled separately later on in this function, so we
- * avoid jumping to point_double here in those special cases.
- */
- points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
- if (points_equal) {
- /*
- * This is obviously not constant-time but, as mentioned before, this
- * case never happens during single point multiplication, so there is no
- * timing leak for ECDH or ECDSA signing.
- */
- point_double(x3, y3, z3, x1, y1, z1);
- return;
- }
- /* I = ftmp = (2h)**2 */
- felem_assign(ftmp, ftmp4);
- felem_scalar(ftmp, 2);
- /* ftmp[i] < 2*2^108 = 2^109 */
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp);
- /* J = ftmp2 = h * I */
- felem_mul(tmp, ftmp4, ftmp);
- felem_reduce(ftmp2, tmp);
- /* V = ftmp4 = U1 * I */
- felem_mul(tmp, ftmp3, ftmp);
- felem_reduce(ftmp4, tmp);
- /* x_out = r**2 - J - 2V */
- smallfelem_square(tmp, small1);
- felem_reduce(x_out, tmp);
- felem_assign(ftmp3, ftmp4);
- felem_scalar(ftmp4, 2);
- felem_sum(ftmp4, ftmp2);
- /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
- felem_diff(x_out, ftmp4);
- /* x_out[i] < 2^105 + 2^101 */
- /* y_out = r(V-x_out) - 2 * s1 * J */
- felem_diff_zero107(ftmp3, x_out);
- /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
- felem_small_mul(tmp, small1, ftmp3);
- felem_mul(tmp2, ftmp6, ftmp2);
- longfelem_scalar(tmp2, 2);
- /* tmp2[i] < 2*2^67 = 2^68 */
- longfelem_diff(tmp, tmp2);
- /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
- felem_reduce_zero105(y_out, tmp);
- /* y_out[i] < 2^106 */
- copy_small_conditional(x_out, x2, z1_is_zero);
- copy_conditional(x_out, x1, z2_is_zero);
- copy_small_conditional(y_out, y2, z1_is_zero);
- copy_conditional(y_out, y1, z2_is_zero);
- copy_small_conditional(z_out, z2, z1_is_zero);
- copy_conditional(z_out, z1, z2_is_zero);
- felem_assign(x3, x_out);
- felem_assign(y3, y_out);
- felem_assign(z3, z_out);
- }
- /*
- * point_add_small is the same as point_add, except that it operates on
- * smallfelems
- */
- static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
- smallfelem x1, smallfelem y1, smallfelem z1,
- smallfelem x2, smallfelem y2, smallfelem z2)
- {
- felem felem_x3, felem_y3, felem_z3;
- felem felem_x1, felem_y1, felem_z1;
- smallfelem_expand(felem_x1, x1);
- smallfelem_expand(felem_y1, y1);
- smallfelem_expand(felem_z1, z1);
- point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0,
- x2, y2, z2);
- felem_shrink(x3, felem_x3);
- felem_shrink(y3, felem_y3);
- felem_shrink(z3, felem_z3);
- }
- /*-
- * Base point pre computation
- * --------------------------
- *
- * Two different sorts of precomputed tables are used in the following code.
- * Each contain various points on the curve, where each point is three field
- * elements (x, y, z).
- *
- * For the base point table, z is usually 1 (0 for the point at infinity).
- * This table has 2 * 16 elements, starting with the following:
- * index | bits | point
- * ------+---------+------------------------------
- * 0 | 0 0 0 0 | 0G
- * 1 | 0 0 0 1 | 1G
- * 2 | 0 0 1 0 | 2^64G
- * 3 | 0 0 1 1 | (2^64 + 1)G
- * 4 | 0 1 0 0 | 2^128G
- * 5 | 0 1 0 1 | (2^128 + 1)G
- * 6 | 0 1 1 0 | (2^128 + 2^64)G
- * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
- * 8 | 1 0 0 0 | 2^192G
- * 9 | 1 0 0 1 | (2^192 + 1)G
- * 10 | 1 0 1 0 | (2^192 + 2^64)G
- * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
- * 12 | 1 1 0 0 | (2^192 + 2^128)G
- * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
- * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
- * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
- * followed by a copy of this with each element multiplied by 2^32.
- *
- * The reason for this is so that we can clock bits into four different
- * locations when doing simple scalar multiplies against the base point,
- * and then another four locations using the second 16 elements.
- *
- * Tables for other points have table[i] = iG for i in 0 .. 16. */
- /* gmul is the table of precomputed base points */
- static const smallfelem gmul[2][16][3] = {
- {{{0, 0, 0, 0},
- {0, 0, 0, 0},
- {0, 0, 0, 0}},
- {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
- 0x6b17d1f2e12c4247},
- {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
- 0x4fe342e2fe1a7f9b},
- {1, 0, 0, 0}},
- {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
- 0x0fa822bc2811aaa5},
- {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
- 0xbff44ae8f5dba80d},
- {1, 0, 0, 0}},
- {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
- 0x300a4bbc89d6726f},
- {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
- 0x72aac7e0d09b4644},
- {1, 0, 0, 0}},
- {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
- 0x447d739beedb5e67},
- {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
- 0x2d4825ab834131ee},
- {1, 0, 0, 0}},
- {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
- 0xef9519328a9c72ff},
- {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
- 0x611e9fc37dbb2c9b},
- {1, 0, 0, 0}},
- {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
- 0x550663797b51f5d8},
- {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
- 0x157164848aecb851},
- {1, 0, 0, 0}},
- {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
- 0xeb5d7745b21141ea},
- {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
- 0xeafd72ebdbecc17b},
- {1, 0, 0, 0}},
- {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
- 0xa6d39677a7849276},
- {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
- 0x674f84749b0b8816},
- {1, 0, 0, 0}},
- {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
- 0x4e769e7672c9ddad},
- {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
- 0x42b99082de830663},
- {1, 0, 0, 0}},
- {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
- 0x78878ef61c6ce04d},
- {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
- 0xb6cb3f5d7b72c321},
- {1, 0, 0, 0}},
- {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
- 0x0c88bc4d716b1287},
- {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
- 0xdd5ddea3f3901dc6},
- {1, 0, 0, 0}},
- {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
- 0x68f344af6b317466},
- {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
- 0x31b9c405f8540a20},
- {1, 0, 0, 0}},
- {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
- 0x4052bf4b6f461db9},
- {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
- 0xfecf4d5190b0fc61},
- {1, 0, 0, 0}},
- {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
- 0x1eddbae2c802e41a},
- {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
- 0x43104d86560ebcfc},
- {1, 0, 0, 0}},
- {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
- 0xb48e26b484f7a21c},
- {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
- 0xfac015404d4d3dab},
- {1, 0, 0, 0}}},
- {{{0, 0, 0, 0},
- {0, 0, 0, 0},
- {0, 0, 0, 0}},
- {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
- 0x7fe36b40af22af89},
- {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
- 0xe697d45825b63624},
- {1, 0, 0, 0}},
- {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
- 0x4a5b506612a677a6},
- {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
- 0xeb13461ceac089f1},
- {1, 0, 0, 0}},
- {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
- 0x0781b8291c6a220a},
- {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
- 0x690cde8df0151593},
- {1, 0, 0, 0}},
- {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
- 0x8a535f566ec73617},
- {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
- 0x0455c08468b08bd7},
- {1, 0, 0, 0}},
- {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
- 0x06bada7ab77f8276},
- {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
- 0x5b476dfd0e6cb18a},
- {1, 0, 0, 0}},
- {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
- 0x3e29864e8a2ec908},
- {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
- 0x239b90ea3dc31e7e},
- {1, 0, 0, 0}},
- {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
- 0x820f4dd949f72ff7},
- {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
- 0x140406ec783a05ec},
- {1, 0, 0, 0}},
- {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
- 0x68f6b8542783dfee},
- {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
- 0xcbe1feba92e40ce6},
- {1, 0, 0, 0}},
- {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
- 0xd0b2f94d2f420109},
- {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
- 0x971459828b0719e5},
- {1, 0, 0, 0}},
- {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
- 0x961610004a866aba},
- {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
- 0x7acb9fadcee75e44},
- {1, 0, 0, 0}},
- {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
- 0x24eb9acca333bf5b},
- {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
- 0x69f891c5acd079cc},
- {1, 0, 0, 0}},
- {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
- 0xe51f547c5972a107},
- {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
- 0x1c309a2b25bb1387},
- {1, 0, 0, 0}},
- {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
- 0x20b87b8aa2c4e503},
- {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
- 0xf5c6fa49919776be},
- {1, 0, 0, 0}},
- {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
- 0x1ed7d1b9332010b9},
- {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
- 0x3a2b03f03217257a},
- {1, 0, 0, 0}},
- {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
- 0x15fee545c78dd9f6},
- {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
- 0x4ab5b6b2b8753f81},
- {1, 0, 0, 0}}}
- };
- /*
- * select_point selects the |idx|th point from a precomputation table and
- * copies it to out.
- */
- static void select_point(const u64 idx, unsigned int size,
- const smallfelem pre_comp[16][3], smallfelem out[3])
- {
- unsigned i, j;
- u64 *outlimbs = &out[0][0];
- memset(out, 0, sizeof(*out) * 3);
- for (i = 0; i < size; i++) {
- const u64 *inlimbs = (u64 *)&pre_comp[i][0][0];
- u64 mask = i ^ idx;
- mask |= mask >> 4;
- mask |= mask >> 2;
- mask |= mask >> 1;
- mask &= 1;
- mask--;
- for (j = 0; j < NLIMBS * 3; j++)
- outlimbs[j] |= inlimbs[j] & mask;
- }
- }
- /* get_bit returns the |i|th bit in |in| */
- static char get_bit(const felem_bytearray in, int i)
- {
- if ((i < 0) || (i >= 256))
- return 0;
- return (in[i >> 3] >> (i & 7)) & 1;
- }
- /*
- * Interleaved point multiplication using precomputed point multiples: The
- * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars
- * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
- * generator, using certain (large) precomputed multiples in g_pre_comp.
- * Output point (X, Y, Z) is stored in x_out, y_out, z_out
- */
- static void batch_mul(felem x_out, felem y_out, felem z_out,
- const felem_bytearray scalars[],
- const unsigned num_points, const u8 *g_scalar,
- const int mixed, const smallfelem pre_comp[][17][3],
- const smallfelem g_pre_comp[2][16][3])
- {
- int i, skip;
- unsigned num, gen_mul = (g_scalar != NULL);
- felem nq[3], ftmp;
- smallfelem tmp[3];
- u64 bits;
- u8 sign, digit;
- /* set nq to the point at infinity */
- memset(nq, 0, sizeof(nq));
- /*
- * Loop over all scalars msb-to-lsb, interleaving additions of multiples
- * of the generator (two in each of the last 32 rounds) and additions of
- * other points multiples (every 5th round).
- */
- skip = 1; /* save two point operations in the first
- * round */
- for (i = (num_points ? 255 : 31); i >= 0; --i) {
- /* double */
- if (!skip)
- point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
- /* add multiples of the generator */
- if (gen_mul && (i <= 31)) {
- /* first, look 32 bits upwards */
- bits = get_bit(g_scalar, i + 224) << 3;
- bits |= get_bit(g_scalar, i + 160) << 2;
- bits |= get_bit(g_scalar, i + 96) << 1;
- bits |= get_bit(g_scalar, i + 32);
- /* select the point to add, in constant time */
- select_point(bits, 16, g_pre_comp[1], tmp);
- if (!skip) {
- /* Arg 1 below is for "mixed" */
- point_add(nq[0], nq[1], nq[2],
- nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
- } else {
- smallfelem_expand(nq[0], tmp[0]);
- smallfelem_expand(nq[1], tmp[1]);
- smallfelem_expand(nq[2], tmp[2]);
- skip = 0;
- }
- /* second, look at the current position */
- bits = get_bit(g_scalar, i + 192) << 3;
- bits |= get_bit(g_scalar, i + 128) << 2;
- bits |= get_bit(g_scalar, i + 64) << 1;
- bits |= get_bit(g_scalar, i);
- /* select the point to add, in constant time */
- select_point(bits, 16, g_pre_comp[0], tmp);
- /* Arg 1 below is for "mixed" */
- point_add(nq[0], nq[1], nq[2],
- nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
- }
- /* do other additions every 5 doublings */
- if (num_points && (i % 5 == 0)) {
- /* loop over all scalars */
- for (num = 0; num < num_points; ++num) {
- bits = get_bit(scalars[num], i + 4) << 5;
- bits |= get_bit(scalars[num], i + 3) << 4;
- bits |= get_bit(scalars[num], i + 2) << 3;
- bits |= get_bit(scalars[num], i + 1) << 2;
- bits |= get_bit(scalars[num], i) << 1;
- bits |= get_bit(scalars[num], i - 1);
- ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
- /*
- * select the point to add or subtract, in constant time
- */
- select_point(digit, 17, pre_comp[num], tmp);
- smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
- * point */
- copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1));
- felem_contract(tmp[1], ftmp);
- if (!skip) {
- point_add(nq[0], nq[1], nq[2],
- nq[0], nq[1], nq[2],
- mixed, tmp[0], tmp[1], tmp[2]);
- } else {
- smallfelem_expand(nq[0], tmp[0]);
- smallfelem_expand(nq[1], tmp[1]);
- smallfelem_expand(nq[2], tmp[2]);
- skip = 0;
- }
- }
- }
- }
- felem_assign(x_out, nq[0]);
- felem_assign(y_out, nq[1]);
- felem_assign(z_out, nq[2]);
- }
- /* Precomputation for the group generator. */
- struct nistp256_pre_comp_st {
- smallfelem g_pre_comp[2][16][3];
- CRYPTO_REF_COUNT references;
- CRYPTO_RWLOCK *lock;
- };
- const EC_METHOD *EC_GFp_nistp256_method(void)
- {
- static const EC_METHOD ret = {
- EC_FLAGS_DEFAULT_OCT,
- NID_X9_62_prime_field,
- ec_GFp_nistp256_group_init,
- ec_GFp_simple_group_finish,
- ec_GFp_simple_group_clear_finish,
- ec_GFp_nist_group_copy,
- ec_GFp_nistp256_group_set_curve,
- ec_GFp_simple_group_get_curve,
- ec_GFp_simple_group_get_degree,
- ec_group_simple_order_bits,
- ec_GFp_simple_group_check_discriminant,
- ec_GFp_simple_point_init,
- ec_GFp_simple_point_finish,
- ec_GFp_simple_point_clear_finish,
- ec_GFp_simple_point_copy,
- ec_GFp_simple_point_set_to_infinity,
- ec_GFp_simple_set_Jprojective_coordinates_GFp,
- ec_GFp_simple_get_Jprojective_coordinates_GFp,
- ec_GFp_simple_point_set_affine_coordinates,
- ec_GFp_nistp256_point_get_affine_coordinates,
- 0 /* point_set_compressed_coordinates */ ,
- 0 /* point2oct */ ,
- 0 /* oct2point */ ,
- ec_GFp_simple_add,
- ec_GFp_simple_dbl,
- ec_GFp_simple_invert,
- ec_GFp_simple_is_at_infinity,
- ec_GFp_simple_is_on_curve,
- ec_GFp_simple_cmp,
- ec_GFp_simple_make_affine,
- ec_GFp_simple_points_make_affine,
- ec_GFp_nistp256_points_mul,
- ec_GFp_nistp256_precompute_mult,
- ec_GFp_nistp256_have_precompute_mult,
- ec_GFp_nist_field_mul,
- ec_GFp_nist_field_sqr,
- 0 /* field_div */ ,
- ec_GFp_simple_field_inv,
- 0 /* field_encode */ ,
- 0 /* field_decode */ ,
- 0, /* field_set_to_one */
- ec_key_simple_priv2oct,
- ec_key_simple_oct2priv,
- 0, /* set private */
- ec_key_simple_generate_key,
- ec_key_simple_check_key,
- ec_key_simple_generate_public_key,
- 0, /* keycopy */
- 0, /* keyfinish */
- ecdh_simple_compute_key,
- 0, /* field_inverse_mod_ord */
- 0, /* blind_coordinates */
- 0, /* ladder_pre */
- 0, /* ladder_step */
- 0 /* ladder_post */
- };
- return &ret;
- }
- /******************************************************************************/
- /*
- * FUNCTIONS TO MANAGE PRECOMPUTATION
- */
- static NISTP256_PRE_COMP *nistp256_pre_comp_new(void)
- {
- NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
- if (ret == NULL) {
- ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
- return ret;
- }
- ret->references = 1;
- ret->lock = CRYPTO_THREAD_lock_new();
- if (ret->lock == NULL) {
- ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
- OPENSSL_free(ret);
- return NULL;
- }
- return ret;
- }
- NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p)
- {
- int i;
- if (p != NULL)
- CRYPTO_UP_REF(&p->references, &i, p->lock);
- return p;
- }
- void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre)
- {
- int i;
- if (pre == NULL)
- return;
- CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
- REF_PRINT_COUNT("EC_nistp256", x);
- if (i > 0)
- return;
- REF_ASSERT_ISNT(i < 0);
- CRYPTO_THREAD_lock_free(pre->lock);
- OPENSSL_free(pre);
- }
- /******************************************************************************/
- /*
- * OPENSSL EC_METHOD FUNCTIONS
- */
- int ec_GFp_nistp256_group_init(EC_GROUP *group)
- {
- int ret;
- ret = ec_GFp_simple_group_init(group);
- group->a_is_minus3 = 1;
- return ret;
- }
- int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
- const BIGNUM *a, const BIGNUM *b,
- BN_CTX *ctx)
- {
- int ret = 0;
- BN_CTX *new_ctx = NULL;
- BIGNUM *curve_p, *curve_a, *curve_b;
- if (ctx == NULL)
- if ((ctx = new_ctx = BN_CTX_new()) == NULL)
- return 0;
- BN_CTX_start(ctx);
- curve_p = BN_CTX_get(ctx);
- curve_a = BN_CTX_get(ctx);
- curve_b = BN_CTX_get(ctx);
- if (curve_b == NULL)
- goto err;
- BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
- BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
- BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
- if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
- ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE,
- EC_R_WRONG_CURVE_PARAMETERS);
- goto err;
- }
- group->field_mod_func = BN_nist_mod_256;
- ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- /*
- * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
- * (X/Z^2, Y/Z^3)
- */
- int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y,
- BN_CTX *ctx)
- {
- felem z1, z2, x_in, y_in;
- smallfelem x_out, y_out;
- longfelem tmp;
- if (EC_POINT_is_at_infinity(group, point)) {
- ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
- EC_R_POINT_AT_INFINITY);
- return 0;
- }
- if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
- (!BN_to_felem(z1, point->Z)))
- return 0;
- felem_inv(z2, z1);
- felem_square(tmp, z2);
- felem_reduce(z1, tmp);
- felem_mul(tmp, x_in, z1);
- felem_reduce(x_in, tmp);
- felem_contract(x_out, x_in);
- if (x != NULL) {
- if (!smallfelem_to_BN(x, x_out)) {
- ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
- ERR_R_BN_LIB);
- return 0;
- }
- }
- felem_mul(tmp, z1, z2);
- felem_reduce(z1, tmp);
- felem_mul(tmp, y_in, z1);
- felem_reduce(y_in, tmp);
- felem_contract(y_out, y_in);
- if (y != NULL) {
- if (!smallfelem_to_BN(y, y_out)) {
- ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
- ERR_R_BN_LIB);
- return 0;
- }
- }
- return 1;
- }
- /* points below is of size |num|, and tmp_smallfelems is of size |num+1| */
- static void make_points_affine(size_t num, smallfelem points[][3],
- smallfelem tmp_smallfelems[])
- {
- /*
- * Runs in constant time, unless an input is the point at infinity (which
- * normally shouldn't happen).
- */
- ec_GFp_nistp_points_make_affine_internal(num,
- points,
- sizeof(smallfelem),
- tmp_smallfelems,
- (void (*)(void *))smallfelem_one,
- smallfelem_is_zero_int,
- (void (*)(void *, const void *))
- smallfelem_assign,
- (void (*)(void *, const void *))
- smallfelem_square_contract,
- (void (*)
- (void *, const void *,
- const void *))
- smallfelem_mul_contract,
- (void (*)(void *, const void *))
- smallfelem_inv_contract,
- /* nothing to contract */
- (void (*)(void *, const void *))
- smallfelem_assign);
- }
- /*
- * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
- * values Result is stored in r (r can equal one of the inputs).
- */
- int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
- const BIGNUM *scalar, size_t num,
- const EC_POINT *points[],
- const BIGNUM *scalars[], BN_CTX *ctx)
- {
- int ret = 0;
- int j;
- int mixed = 0;
- BIGNUM *x, *y, *z, *tmp_scalar;
- felem_bytearray g_secret;
- felem_bytearray *secrets = NULL;
- smallfelem (*pre_comp)[17][3] = NULL;
- smallfelem *tmp_smallfelems = NULL;
- unsigned i;
- int num_bytes;
- int have_pre_comp = 0;
- size_t num_points = num;
- smallfelem x_in, y_in, z_in;
- felem x_out, y_out, z_out;
- NISTP256_PRE_COMP *pre = NULL;
- const smallfelem(*g_pre_comp)[16][3] = NULL;
- EC_POINT *generator = NULL;
- const EC_POINT *p = NULL;
- const BIGNUM *p_scalar = NULL;
- BN_CTX_start(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- z = BN_CTX_get(ctx);
- tmp_scalar = BN_CTX_get(ctx);
- if (tmp_scalar == NULL)
- goto err;
- if (scalar != NULL) {
- pre = group->pre_comp.nistp256;
- if (pre)
- /* we have precomputation, try to use it */
- g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp;
- else
- /* try to use the standard precomputation */
- g_pre_comp = &gmul[0];
- generator = EC_POINT_new(group);
- if (generator == NULL)
- goto err;
- /* get the generator from precomputation */
- if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) ||
- !smallfelem_to_BN(y, g_pre_comp[0][1][1]) ||
- !smallfelem_to_BN(z, g_pre_comp[0][1][2])) {
- ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
- generator, x, y, z,
- ctx))
- goto err;
- if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
- /* precomputation matches generator */
- have_pre_comp = 1;
- else
- /*
- * we don't have valid precomputation: treat the generator as a
- * random point
- */
- num_points++;
- }
- if (num_points > 0) {
- if (num_points >= 3) {
- /*
- * unless we precompute multiples for just one or two points,
- * converting those into affine form is time well spent
- */
- mixed = 1;
- }
- secrets = OPENSSL_malloc(sizeof(*secrets) * num_points);
- pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points);
- if (mixed)
- tmp_smallfelems =
- OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1));
- if ((secrets == NULL) || (pre_comp == NULL)
- || (mixed && (tmp_smallfelems == NULL))) {
- ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- /*
- * we treat NULL scalars as 0, and NULL points as points at infinity,
- * i.e., they contribute nothing to the linear combination
- */
- memset(secrets, 0, sizeof(*secrets) * num_points);
- memset(pre_comp, 0, sizeof(*pre_comp) * num_points);
- for (i = 0; i < num_points; ++i) {
- if (i == num) {
- /*
- * we didn't have a valid precomputation, so we pick the
- * generator
- */
- p = EC_GROUP_get0_generator(group);
- p_scalar = scalar;
- } else {
- /* the i^th point */
- p = points[i];
- p_scalar = scalars[i];
- }
- if ((p_scalar != NULL) && (p != NULL)) {
- /* reduce scalar to 0 <= scalar < 2^256 */
- if ((BN_num_bits(p_scalar) > 256)
- || (BN_is_negative(p_scalar))) {
- /*
- * this is an unusual input, and we don't guarantee
- * constant-timeness
- */
- if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
- ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- num_bytes = BN_bn2lebinpad(tmp_scalar,
- secrets[i], sizeof(secrets[i]));
- } else {
- num_bytes = BN_bn2lebinpad(p_scalar,
- secrets[i], sizeof(secrets[i]));
- }
- if (num_bytes < 0) {
- ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- /* precompute multiples */
- if ((!BN_to_felem(x_out, p->X)) ||
- (!BN_to_felem(y_out, p->Y)) ||
- (!BN_to_felem(z_out, p->Z)))
- goto err;
- felem_shrink(pre_comp[i][1][0], x_out);
- felem_shrink(pre_comp[i][1][1], y_out);
- felem_shrink(pre_comp[i][1][2], z_out);
- for (j = 2; j <= 16; ++j) {
- if (j & 1) {
- point_add_small(pre_comp[i][j][0], pre_comp[i][j][1],
- pre_comp[i][j][2], pre_comp[i][1][0],
- pre_comp[i][1][1], pre_comp[i][1][2],
- pre_comp[i][j - 1][0],
- pre_comp[i][j - 1][1],
- pre_comp[i][j - 1][2]);
- } else {
- point_double_small(pre_comp[i][j][0],
- pre_comp[i][j][1],
- pre_comp[i][j][2],
- pre_comp[i][j / 2][0],
- pre_comp[i][j / 2][1],
- pre_comp[i][j / 2][2]);
- }
- }
- }
- }
- if (mixed)
- make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
- }
- /* the scalar for the generator */
- if ((scalar != NULL) && (have_pre_comp)) {
- memset(g_secret, 0, sizeof(g_secret));
- /* reduce scalar to 0 <= scalar < 2^256 */
- if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) {
- /*
- * this is an unusual input, and we don't guarantee
- * constant-timeness
- */
- if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
- ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
- } else {
- num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
- }
- /* do the multiplication with generator precomputation */
- batch_mul(x_out, y_out, z_out,
- (const felem_bytearray(*))secrets, num_points,
- g_secret,
- mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp);
- } else {
- /* do the multiplication without generator precomputation */
- batch_mul(x_out, y_out, z_out,
- (const felem_bytearray(*))secrets, num_points,
- NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL);
- }
- /* reduce the output to its unique minimal representation */
- felem_contract(x_in, x_out);
- felem_contract(y_in, y_out);
- felem_contract(z_in, z_out);
- if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) ||
- (!smallfelem_to_BN(z, z_in))) {
- ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
- goto err;
- }
- ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
- err:
- BN_CTX_end(ctx);
- EC_POINT_free(generator);
- OPENSSL_free(secrets);
- OPENSSL_free(pre_comp);
- OPENSSL_free(tmp_smallfelems);
- return ret;
- }
- int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
- {
- int ret = 0;
- NISTP256_PRE_COMP *pre = NULL;
- int i, j;
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y;
- EC_POINT *generator = NULL;
- smallfelem tmp_smallfelems[32];
- felem x_tmp, y_tmp, z_tmp;
- /* throw away old precomputation */
- EC_pre_comp_free(group);
- if (ctx == NULL)
- if ((ctx = new_ctx = BN_CTX_new()) == NULL)
- return 0;
- BN_CTX_start(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- if (y == NULL)
- goto err;
- /* get the generator */
- if (group->generator == NULL)
- goto err;
- generator = EC_POINT_new(group);
- if (generator == NULL)
- goto err;
- BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x);
- BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y);
- if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
- goto err;
- if ((pre = nistp256_pre_comp_new()) == NULL)
- goto err;
- /*
- * if the generator is the standard one, use built-in precomputation
- */
- if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
- memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
- goto done;
- }
- if ((!BN_to_felem(x_tmp, group->generator->X)) ||
- (!BN_to_felem(y_tmp, group->generator->Y)) ||
- (!BN_to_felem(z_tmp, group->generator->Z)))
- goto err;
- felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
- felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
- felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
- /*
- * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G,
- * 2^160*G, 2^224*G for the second one
- */
- for (i = 1; i <= 8; i <<= 1) {
- point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
- pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
- pre->g_pre_comp[0][i][1],
- pre->g_pre_comp[0][i][2]);
- for (j = 0; j < 31; ++j) {
- point_double_small(pre->g_pre_comp[1][i][0],
- pre->g_pre_comp[1][i][1],
- pre->g_pre_comp[1][i][2],
- pre->g_pre_comp[1][i][0],
- pre->g_pre_comp[1][i][1],
- pre->g_pre_comp[1][i][2]);
- }
- if (i == 8)
- break;
- point_double_small(pre->g_pre_comp[0][2 * i][0],
- pre->g_pre_comp[0][2 * i][1],
- pre->g_pre_comp[0][2 * i][2],
- pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
- pre->g_pre_comp[1][i][2]);
- for (j = 0; j < 31; ++j) {
- point_double_small(pre->g_pre_comp[0][2 * i][0],
- pre->g_pre_comp[0][2 * i][1],
- pre->g_pre_comp[0][2 * i][2],
- pre->g_pre_comp[0][2 * i][0],
- pre->g_pre_comp[0][2 * i][1],
- pre->g_pre_comp[0][2 * i][2]);
- }
- }
- for (i = 0; i < 2; i++) {
- /* g_pre_comp[i][0] is the point at infinity */
- memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
- /* the remaining multiples */
- /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
- point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
- pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
- pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
- pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
- pre->g_pre_comp[i][2][2]);
- /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
- point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
- pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
- pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
- pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
- pre->g_pre_comp[i][2][2]);
- /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
- point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
- pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
- pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
- pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
- pre->g_pre_comp[i][4][2]);
- /*
- * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G
- */
- point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
- pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
- pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
- pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
- pre->g_pre_comp[i][2][2]);
- for (j = 1; j < 8; ++j) {
- /* odd multiples: add G resp. 2^32*G */
- point_add_small(pre->g_pre_comp[i][2 * j + 1][0],
- pre->g_pre_comp[i][2 * j + 1][1],
- pre->g_pre_comp[i][2 * j + 1][2],
- pre->g_pre_comp[i][2 * j][0],
- pre->g_pre_comp[i][2 * j][1],
- pre->g_pre_comp[i][2 * j][2],
- pre->g_pre_comp[i][1][0],
- pre->g_pre_comp[i][1][1],
- pre->g_pre_comp[i][1][2]);
- }
- }
- make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
- done:
- SETPRECOMP(group, nistp256, pre);
- pre = NULL;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- EC_POINT_free(generator);
- BN_CTX_free(new_ctx);
- EC_nistp256_pre_comp_free(pre);
- return ret;
- }
- int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
- {
- return HAVEPRECOMP(group, nistp256);
- }
- #endif
|