2
0

bn.h 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539
  1. /*
  2. * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
  3. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
  4. *
  5. * Licensed under the OpenSSL license (the "License"). You may not use
  6. * this file except in compliance with the License. You can obtain a copy
  7. * in the file LICENSE in the source distribution or at
  8. * https://www.openssl.org/source/license.html
  9. */
  10. #ifndef HEADER_BN_H
  11. # define HEADER_BN_H
  12. # include <openssl/e_os2.h>
  13. # ifndef OPENSSL_NO_STDIO
  14. # include <stdio.h>
  15. # endif
  16. # include <openssl/opensslconf.h>
  17. # include <openssl/ossl_typ.h>
  18. # include <openssl/crypto.h>
  19. # include <openssl/bnerr.h>
  20. #ifdef __cplusplus
  21. extern "C" {
  22. #endif
  23. /*
  24. * 64-bit processor with LP64 ABI
  25. */
  26. # ifdef SIXTY_FOUR_BIT_LONG
  27. # define BN_ULONG unsigned long
  28. # define BN_BYTES 8
  29. # endif
  30. /*
  31. * 64-bit processor other than LP64 ABI
  32. */
  33. # ifdef SIXTY_FOUR_BIT
  34. # define BN_ULONG unsigned long long
  35. # define BN_BYTES 8
  36. # endif
  37. # ifdef THIRTY_TWO_BIT
  38. # define BN_ULONG unsigned int
  39. # define BN_BYTES 4
  40. # endif
  41. # define BN_BITS2 (BN_BYTES * 8)
  42. # define BN_BITS (BN_BITS2 * 2)
  43. # define BN_TBIT ((BN_ULONG)1 << (BN_BITS2 - 1))
  44. # define BN_FLG_MALLOCED 0x01
  45. # define BN_FLG_STATIC_DATA 0x02
  46. /*
  47. * avoid leaking exponent information through timing,
  48. * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime,
  49. * BN_div() will call BN_div_no_branch,
  50. * BN_mod_inverse() will call bn_mod_inverse_no_branch.
  51. */
  52. # define BN_FLG_CONSTTIME 0x04
  53. # define BN_FLG_SECURE 0x08
  54. # if OPENSSL_API_COMPAT < 0x00908000L
  55. /* deprecated name for the flag */
  56. # define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME
  57. # define BN_FLG_FREE 0x8000 /* used for debugging */
  58. # endif
  59. void BN_set_flags(BIGNUM *b, int n);
  60. int BN_get_flags(const BIGNUM *b, int n);
  61. /* Values for |top| in BN_rand() */
  62. #define BN_RAND_TOP_ANY -1
  63. #define BN_RAND_TOP_ONE 0
  64. #define BN_RAND_TOP_TWO 1
  65. /* Values for |bottom| in BN_rand() */
  66. #define BN_RAND_BOTTOM_ANY 0
  67. #define BN_RAND_BOTTOM_ODD 1
  68. /*
  69. * get a clone of a BIGNUM with changed flags, for *temporary* use only (the
  70. * two BIGNUMs cannot be used in parallel!). Also only for *read only* use. The
  71. * value |dest| should be a newly allocated BIGNUM obtained via BN_new() that
  72. * has not been otherwise initialised or used.
  73. */
  74. void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags);
  75. /* Wrapper function to make using BN_GENCB easier */
  76. int BN_GENCB_call(BN_GENCB *cb, int a, int b);
  77. BN_GENCB *BN_GENCB_new(void);
  78. void BN_GENCB_free(BN_GENCB *cb);
  79. /* Populate a BN_GENCB structure with an "old"-style callback */
  80. void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
  81. void *cb_arg);
  82. /* Populate a BN_GENCB structure with a "new"-style callback */
  83. void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
  84. void *cb_arg);
  85. void *BN_GENCB_get_arg(BN_GENCB *cb);
  86. # define BN_prime_checks 0 /* default: select number of iterations based
  87. * on the size of the number */
  88. /*
  89. * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations
  90. * that will be done for checking that a random number is probably prime. The
  91. * error rate for accepting a composite number as prime depends on the size of
  92. * the prime |b|. The error rates used are for calculating an RSA key with 2 primes,
  93. * and so the level is what you would expect for a key of double the size of the
  94. * prime.
  95. *
  96. * This table is generated using the algorithm of FIPS PUB 186-4
  97. * Digital Signature Standard (DSS), section F.1, page 117.
  98. * (https://dx.doi.org/10.6028/NIST.FIPS.186-4)
  99. *
  100. * The following magma script was used to generate the output:
  101. * securitybits:=125;
  102. * k:=1024;
  103. * for t:=1 to 65 do
  104. * for M:=3 to Floor(2*Sqrt(k-1)-1) do
  105. * S:=0;
  106. * // Sum over m
  107. * for m:=3 to M do
  108. * s:=0;
  109. * // Sum over j
  110. * for j:=2 to m do
  111. * s+:=(RealField(32)!2)^-(j+(k-1)/j);
  112. * end for;
  113. * S+:=2^(m-(m-1)*t)*s;
  114. * end for;
  115. * A:=2^(k-2-M*t);
  116. * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S;
  117. * pkt:=2.00743*Log(2)*k*2^-k*(A+B);
  118. * seclevel:=Floor(-Log(2,pkt));
  119. * if seclevel ge securitybits then
  120. * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M;
  121. * break;
  122. * end if;
  123. * end for;
  124. * if seclevel ge securitybits then break; end if;
  125. * end for;
  126. *
  127. * It can be run online at:
  128. * http://magma.maths.usyd.edu.au/calc
  129. *
  130. * And will output:
  131. * k: 1024, security: 129 bits (t: 6, M: 23)
  132. *
  133. * k is the number of bits of the prime, securitybits is the level we want to
  134. * reach.
  135. *
  136. * prime length | RSA key size | # MR tests | security level
  137. * -------------+--------------|------------+---------------
  138. * (b) >= 6394 | >= 12788 | 3 | 256 bit
  139. * (b) >= 3747 | >= 7494 | 3 | 192 bit
  140. * (b) >= 1345 | >= 2690 | 4 | 128 bit
  141. * (b) >= 1080 | >= 2160 | 5 | 128 bit
  142. * (b) >= 852 | >= 1704 | 5 | 112 bit
  143. * (b) >= 476 | >= 952 | 5 | 80 bit
  144. * (b) >= 400 | >= 800 | 6 | 80 bit
  145. * (b) >= 347 | >= 694 | 7 | 80 bit
  146. * (b) >= 308 | >= 616 | 8 | 80 bit
  147. * (b) >= 55 | >= 110 | 27 | 64 bit
  148. * (b) >= 6 | >= 12 | 34 | 64 bit
  149. */
  150. # define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \
  151. (b) >= 1345 ? 4 : \
  152. (b) >= 476 ? 5 : \
  153. (b) >= 400 ? 6 : \
  154. (b) >= 347 ? 7 : \
  155. (b) >= 308 ? 8 : \
  156. (b) >= 55 ? 27 : \
  157. /* b >= 6 */ 34)
  158. # define BN_num_bytes(a) ((BN_num_bits(a)+7)/8)
  159. int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w);
  160. int BN_is_zero(const BIGNUM *a);
  161. int BN_is_one(const BIGNUM *a);
  162. int BN_is_word(const BIGNUM *a, const BN_ULONG w);
  163. int BN_is_odd(const BIGNUM *a);
  164. # define BN_one(a) (BN_set_word((a),1))
  165. void BN_zero_ex(BIGNUM *a);
  166. # if OPENSSL_API_COMPAT >= 0x00908000L
  167. # define BN_zero(a) BN_zero_ex(a)
  168. # else
  169. # define BN_zero(a) (BN_set_word((a),0))
  170. # endif
  171. const BIGNUM *BN_value_one(void);
  172. char *BN_options(void);
  173. BN_CTX *BN_CTX_new(void);
  174. BN_CTX *BN_CTX_secure_new(void);
  175. void BN_CTX_free(BN_CTX *c);
  176. void BN_CTX_start(BN_CTX *ctx);
  177. BIGNUM *BN_CTX_get(BN_CTX *ctx);
  178. void BN_CTX_end(BN_CTX *ctx);
  179. int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
  180. int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom);
  181. int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
  182. int BN_priv_rand_range(BIGNUM *rnd, const BIGNUM *range);
  183. int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
  184. int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
  185. int BN_num_bits(const BIGNUM *a);
  186. int BN_num_bits_word(BN_ULONG l);
  187. int BN_security_bits(int L, int N);
  188. BIGNUM *BN_new(void);
  189. BIGNUM *BN_secure_new(void);
  190. void BN_clear_free(BIGNUM *a);
  191. BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
  192. void BN_swap(BIGNUM *a, BIGNUM *b);
  193. BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
  194. int BN_bn2bin(const BIGNUM *a, unsigned char *to);
  195. int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen);
  196. BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret);
  197. int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen);
  198. BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret);
  199. int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
  200. int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  201. int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  202. int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  203. int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  204. int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
  205. int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
  206. /** BN_set_negative sets sign of a BIGNUM
  207. * \param b pointer to the BIGNUM object
  208. * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise
  209. */
  210. void BN_set_negative(BIGNUM *b, int n);
  211. /** BN_is_negative returns 1 if the BIGNUM is negative
  212. * \param b pointer to the BIGNUM object
  213. * \return 1 if a < 0 and 0 otherwise
  214. */
  215. int BN_is_negative(const BIGNUM *b);
  216. int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
  217. BN_CTX *ctx);
  218. # define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx))
  219. int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx);
  220. int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
  221. BN_CTX *ctx);
  222. int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  223. const BIGNUM *m);
  224. int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
  225. BN_CTX *ctx);
  226. int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  227. const BIGNUM *m);
  228. int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
  229. BN_CTX *ctx);
  230. int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  231. int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  232. int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m);
  233. int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
  234. BN_CTX *ctx);
  235. int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m);
  236. BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
  237. BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
  238. int BN_mul_word(BIGNUM *a, BN_ULONG w);
  239. int BN_add_word(BIGNUM *a, BN_ULONG w);
  240. int BN_sub_word(BIGNUM *a, BN_ULONG w);
  241. int BN_set_word(BIGNUM *a, BN_ULONG w);
  242. BN_ULONG BN_get_word(const BIGNUM *a);
  243. int BN_cmp(const BIGNUM *a, const BIGNUM *b);
  244. void BN_free(BIGNUM *a);
  245. int BN_is_bit_set(const BIGNUM *a, int n);
  246. int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
  247. int BN_lshift1(BIGNUM *r, const BIGNUM *a);
  248. int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  249. int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  250. const BIGNUM *m, BN_CTX *ctx);
  251. int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  252. const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
  253. int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
  254. const BIGNUM *m, BN_CTX *ctx,
  255. BN_MONT_CTX *in_mont);
  256. int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
  257. const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
  258. int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1,
  259. const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
  260. BN_CTX *ctx, BN_MONT_CTX *m_ctx);
  261. int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  262. const BIGNUM *m, BN_CTX *ctx);
  263. int BN_mask_bits(BIGNUM *a, int n);
  264. # ifndef OPENSSL_NO_STDIO
  265. int BN_print_fp(FILE *fp, const BIGNUM *a);
  266. # endif
  267. int BN_print(BIO *bio, const BIGNUM *a);
  268. int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx);
  269. int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
  270. int BN_rshift1(BIGNUM *r, const BIGNUM *a);
  271. void BN_clear(BIGNUM *a);
  272. BIGNUM *BN_dup(const BIGNUM *a);
  273. int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
  274. int BN_set_bit(BIGNUM *a, int n);
  275. int BN_clear_bit(BIGNUM *a, int n);
  276. char *BN_bn2hex(const BIGNUM *a);
  277. char *BN_bn2dec(const BIGNUM *a);
  278. int BN_hex2bn(BIGNUM **a, const char *str);
  279. int BN_dec2bn(BIGNUM **a, const char *str);
  280. int BN_asc2bn(BIGNUM **a, const char *str);
  281. int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
  282. int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); /* returns
  283. * -2 for
  284. * error */
  285. BIGNUM *BN_mod_inverse(BIGNUM *ret,
  286. const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
  287. BIGNUM *BN_mod_sqrt(BIGNUM *ret,
  288. const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
  289. void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords);
  290. /* Deprecated versions */
  291. DEPRECATEDIN_0_9_8(BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe,
  292. const BIGNUM *add,
  293. const BIGNUM *rem,
  294. void (*callback) (int, int,
  295. void *),
  296. void *cb_arg))
  297. DEPRECATEDIN_0_9_8(int
  298. BN_is_prime(const BIGNUM *p, int nchecks,
  299. void (*callback) (int, int, void *),
  300. BN_CTX *ctx, void *cb_arg))
  301. DEPRECATEDIN_0_9_8(int
  302. BN_is_prime_fasttest(const BIGNUM *p, int nchecks,
  303. void (*callback) (int, int, void *),
  304. BN_CTX *ctx, void *cb_arg,
  305. int do_trial_division))
  306. /* Newer versions */
  307. int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
  308. const BIGNUM *rem, BN_GENCB *cb);
  309. int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb);
  310. int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx,
  311. int do_trial_division, BN_GENCB *cb);
  312. int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx);
  313. int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
  314. const BIGNUM *Xp, const BIGNUM *Xp1,
  315. const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
  316. BN_GENCB *cb);
  317. int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1,
  318. BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e,
  319. BN_CTX *ctx, BN_GENCB *cb);
  320. BN_MONT_CTX *BN_MONT_CTX_new(void);
  321. int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  322. BN_MONT_CTX *mont, BN_CTX *ctx);
  323. int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
  324. BN_CTX *ctx);
  325. int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
  326. BN_CTX *ctx);
  327. void BN_MONT_CTX_free(BN_MONT_CTX *mont);
  328. int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx);
  329. BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);
  330. BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock,
  331. const BIGNUM *mod, BN_CTX *ctx);
  332. /* BN_BLINDING flags */
  333. # define BN_BLINDING_NO_UPDATE 0x00000001
  334. # define BN_BLINDING_NO_RECREATE 0x00000002
  335. BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod);
  336. void BN_BLINDING_free(BN_BLINDING *b);
  337. int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx);
  338. int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
  339. int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
  340. int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *);
  341. int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b,
  342. BN_CTX *);
  343. int BN_BLINDING_is_current_thread(BN_BLINDING *b);
  344. void BN_BLINDING_set_current_thread(BN_BLINDING *b);
  345. int BN_BLINDING_lock(BN_BLINDING *b);
  346. int BN_BLINDING_unlock(BN_BLINDING *b);
  347. unsigned long BN_BLINDING_get_flags(const BN_BLINDING *);
  348. void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long);
  349. BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,
  350. const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
  351. int (*bn_mod_exp) (BIGNUM *r,
  352. const BIGNUM *a,
  353. const BIGNUM *p,
  354. const BIGNUM *m,
  355. BN_CTX *ctx,
  356. BN_MONT_CTX *m_ctx),
  357. BN_MONT_CTX *m_ctx);
  358. DEPRECATEDIN_0_9_8(void BN_set_params(int mul, int high, int low, int mont))
  359. DEPRECATEDIN_0_9_8(int BN_get_params(int which)) /* 0, mul, 1 high, 2 low, 3
  360. * mont */
  361. BN_RECP_CTX *BN_RECP_CTX_new(void);
  362. void BN_RECP_CTX_free(BN_RECP_CTX *recp);
  363. int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx);
  364. int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
  365. BN_RECP_CTX *recp, BN_CTX *ctx);
  366. int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  367. const BIGNUM *m, BN_CTX *ctx);
  368. int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
  369. BN_RECP_CTX *recp, BN_CTX *ctx);
  370. # ifndef OPENSSL_NO_EC2M
  371. /*
  372. * Functions for arithmetic over binary polynomials represented by BIGNUMs.
  373. * The BIGNUM::neg property of BIGNUMs representing binary polynomials is
  374. * ignored. Note that input arguments are not const so that their bit arrays
  375. * can be expanded to the appropriate size if needed.
  376. */
  377. /*
  378. * r = a + b
  379. */
  380. int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  381. # define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b)
  382. /*
  383. * r=a mod p
  384. */
  385. int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p);
  386. /* r = (a * b) mod p */
  387. int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  388. const BIGNUM *p, BN_CTX *ctx);
  389. /* r = (a * a) mod p */
  390. int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  391. /* r = (1 / b) mod p */
  392. int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx);
  393. /* r = (a / b) mod p */
  394. int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  395. const BIGNUM *p, BN_CTX *ctx);
  396. /* r = (a ^ b) mod p */
  397. int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  398. const BIGNUM *p, BN_CTX *ctx);
  399. /* r = sqrt(a) mod p */
  400. int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  401. BN_CTX *ctx);
  402. /* r^2 + r = a mod p */
  403. int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  404. BN_CTX *ctx);
  405. # define BN_GF2m_cmp(a, b) BN_ucmp((a), (b))
  406. /*-
  407. * Some functions allow for representation of the irreducible polynomials
  408. * as an unsigned int[], say p. The irreducible f(t) is then of the form:
  409. * t^p[0] + t^p[1] + ... + t^p[k]
  410. * where m = p[0] > p[1] > ... > p[k] = 0.
  411. */
  412. /* r = a mod p */
  413. int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]);
  414. /* r = (a * b) mod p */
  415. int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  416. const int p[], BN_CTX *ctx);
  417. /* r = (a * a) mod p */
  418. int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
  419. BN_CTX *ctx);
  420. /* r = (1 / b) mod p */
  421. int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[],
  422. BN_CTX *ctx);
  423. /* r = (a / b) mod p */
  424. int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  425. const int p[], BN_CTX *ctx);
  426. /* r = (a ^ b) mod p */
  427. int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  428. const int p[], BN_CTX *ctx);
  429. /* r = sqrt(a) mod p */
  430. int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a,
  431. const int p[], BN_CTX *ctx);
  432. /* r^2 + r = a mod p */
  433. int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a,
  434. const int p[], BN_CTX *ctx);
  435. int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max);
  436. int BN_GF2m_arr2poly(const int p[], BIGNUM *a);
  437. # endif
  438. /*
  439. * faster mod functions for the 'NIST primes' 0 <= a < p^2
  440. */
  441. int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  442. int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  443. int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  444. int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  445. int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  446. const BIGNUM *BN_get0_nist_prime_192(void);
  447. const BIGNUM *BN_get0_nist_prime_224(void);
  448. const BIGNUM *BN_get0_nist_prime_256(void);
  449. const BIGNUM *BN_get0_nist_prime_384(void);
  450. const BIGNUM *BN_get0_nist_prime_521(void);
  451. int (*BN_nist_mod_func(const BIGNUM *p)) (BIGNUM *r, const BIGNUM *a,
  452. const BIGNUM *field, BN_CTX *ctx);
  453. int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range,
  454. const BIGNUM *priv, const unsigned char *message,
  455. size_t message_len, BN_CTX *ctx);
  456. /* Primes from RFC 2409 */
  457. BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn);
  458. BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn);
  459. /* Primes from RFC 3526 */
  460. BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn);
  461. BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn);
  462. BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn);
  463. BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn);
  464. BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn);
  465. BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn);
  466. # if OPENSSL_API_COMPAT < 0x10100000L
  467. # define get_rfc2409_prime_768 BN_get_rfc2409_prime_768
  468. # define get_rfc2409_prime_1024 BN_get_rfc2409_prime_1024
  469. # define get_rfc3526_prime_1536 BN_get_rfc3526_prime_1536
  470. # define get_rfc3526_prime_2048 BN_get_rfc3526_prime_2048
  471. # define get_rfc3526_prime_3072 BN_get_rfc3526_prime_3072
  472. # define get_rfc3526_prime_4096 BN_get_rfc3526_prime_4096
  473. # define get_rfc3526_prime_6144 BN_get_rfc3526_prime_6144
  474. # define get_rfc3526_prime_8192 BN_get_rfc3526_prime_8192
  475. # endif
  476. int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom);
  477. # ifdef __cplusplus
  478. }
  479. # endif
  480. #endif