123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- import sys
- import matplotlib.pyplot as plt
- from matplotlib.collections import LineCollection
- from matplotlib import colors as mcolors
- import numpy as np
- import math
- def draw_mv_ls(axis, mv_ls, mode=0):
- colors = np.array([(1., 0., 0., 1.)])
- segs = np.array([
- np.array([[ptr[0], ptr[1]], [ptr[0] + ptr[2], ptr[1] + ptr[3]]])
- for ptr in mv_ls
- ])
- line_segments = LineCollection(
- segs, linewidths=(1.,), colors=colors, linestyle='solid')
- axis.add_collection(line_segments)
- if mode == 0:
- axis.scatter(mv_ls[:, 0], mv_ls[:, 1], s=2, c='b')
- else:
- axis.scatter(
- mv_ls[:, 0] + mv_ls[:, 2], mv_ls[:, 1] + mv_ls[:, 3], s=2, c='b')
- def draw_pred_block_ls(axis, mv_ls, bs, mode=0):
- colors = np.array([(0., 0., 0., 1.)])
- segs = []
- for ptr in mv_ls:
- if mode == 0:
- x = ptr[0]
- y = ptr[1]
- else:
- x = ptr[0] + ptr[2]
- y = ptr[1] + ptr[3]
- x_ls = [x, x + bs, x + bs, x, x]
- y_ls = [y, y, y + bs, y + bs, y]
- segs.append(np.column_stack([x_ls, y_ls]))
- line_segments = LineCollection(
- segs, linewidths=(.5,), colors=colors, linestyle='solid')
- axis.add_collection(line_segments)
- def read_frame(fp, no_swap=0):
- plane = [None, None, None]
- for i in range(3):
- line = fp.readline()
- word_ls = line.split()
- word_ls = [int(item) for item in word_ls]
- rows = word_ls[0]
- cols = word_ls[1]
- line = fp.readline()
- word_ls = line.split()
- word_ls = [int(item) for item in word_ls]
- plane[i] = np.array(word_ls).reshape(rows, cols)
- if i > 0:
- plane[i] = plane[i].repeat(2, axis=0).repeat(2, axis=1)
- plane = np.array(plane)
- if no_swap == 0:
- plane = np.swapaxes(np.swapaxes(plane, 0, 1), 1, 2)
- return plane
- def yuv_to_rgb(yuv):
- #mat = np.array([
- # [1.164, 0 , 1.596 ],
- # [1.164, -0.391, -0.813],
- # [1.164, 2.018 , 0 ] ]
- # )
- #c = np.array([[ -16 , -16 , -16 ],
- # [ 0 , -128, -128 ],
- # [ -128, -128, 0 ]])
- mat = np.array([[1, 0, 1.4075], [1, -0.3445, -0.7169], [1, 1.7790, 0]])
- c = np.array([[0, 0, 0], [0, -128, -128], [-128, -128, 0]])
- mat_c = np.dot(mat, c)
- v = np.array([mat_c[0, 0], mat_c[1, 1], mat_c[2, 2]])
- mat = mat.transpose()
- rgb = np.dot(yuv, mat) + v
- rgb = rgb.astype(int)
- rgb = rgb.clip(0, 255)
- return rgb / 255.
- def read_feature_score(fp, mv_rows, mv_cols):
- line = fp.readline()
- word_ls = line.split()
- feature_score = np.array([math.log(float(v) + 1, 2) for v in word_ls])
- feature_score = feature_score.reshape(mv_rows, mv_cols)
- return feature_score
- def read_mv_mode_arr(fp, mv_rows, mv_cols):
- line = fp.readline()
- word_ls = line.split()
- mv_mode_arr = np.array([int(v) for v in word_ls])
- mv_mode_arr = mv_mode_arr.reshape(mv_rows, mv_cols)
- return mv_mode_arr
- def read_frame_dpl_stats(fp):
- line = fp.readline()
- word_ls = line.split()
- frame_idx = int(word_ls[1])
- mi_rows = int(word_ls[3])
- mi_cols = int(word_ls[5])
- bs = int(word_ls[7])
- ref_frame_idx = int(word_ls[9])
- rf_idx = int(word_ls[11])
- gf_frame_offset = int(word_ls[13])
- ref_gf_frame_offset = int(word_ls[15])
- mi_size = bs / 8
- mv_ls = []
- mv_rows = int((math.ceil(mi_rows * 1. / mi_size)))
- mv_cols = int((math.ceil(mi_cols * 1. / mi_size)))
- for i in range(mv_rows * mv_cols):
- line = fp.readline()
- word_ls = line.split()
- row = int(word_ls[0]) * 8.
- col = int(word_ls[1]) * 8.
- mv_row = int(word_ls[2]) / 8.
- mv_col = int(word_ls[3]) / 8.
- mv_ls.append([col, row, mv_col, mv_row])
- mv_ls = np.array(mv_ls)
- feature_score = read_feature_score(fp, mv_rows, mv_cols)
- mv_mode_arr = read_mv_mode_arr(fp, mv_rows, mv_cols)
- img = yuv_to_rgb(read_frame(fp))
- ref = yuv_to_rgb(read_frame(fp))
- return rf_idx, frame_idx, ref_frame_idx, gf_frame_offset, ref_gf_frame_offset, mv_ls, img, ref, bs, feature_score, mv_mode_arr
- def read_dpl_stats_file(filename, frame_num=0):
- fp = open(filename)
- line = fp.readline()
- width = 0
- height = 0
- data_ls = []
- while (line):
- if line[0] == '=':
- data_ls.append(read_frame_dpl_stats(fp))
- line = fp.readline()
- if frame_num > 0 and len(data_ls) == frame_num:
- break
- return data_ls
- if __name__ == '__main__':
- filename = sys.argv[1]
- data_ls = read_dpl_stats_file(filename, frame_num=5)
- for rf_idx, frame_idx, ref_frame_idx, gf_frame_offset, ref_gf_frame_offset, mv_ls, img, ref, bs, feature_score, mv_mode_arr in data_ls:
- fig, axes = plt.subplots(2, 2)
- axes[0][0].imshow(img)
- draw_mv_ls(axes[0][0], mv_ls)
- draw_pred_block_ls(axes[0][0], mv_ls, bs, mode=0)
- #axes[0].grid(color='k', linestyle='-')
- axes[0][0].set_ylim(img.shape[0], 0)
- axes[0][0].set_xlim(0, img.shape[1])
- if ref is not None:
- axes[0][1].imshow(ref)
- draw_mv_ls(axes[0][1], mv_ls, mode=1)
- draw_pred_block_ls(axes[0][1], mv_ls, bs, mode=1)
- #axes[1].grid(color='k', linestyle='-')
- axes[0][1].set_ylim(ref.shape[0], 0)
- axes[0][1].set_xlim(0, ref.shape[1])
- axes[1][0].imshow(feature_score)
- #feature_score_arr = feature_score.flatten()
- #feature_score_max = feature_score_arr.max()
- #feature_score_min = feature_score_arr.min()
- #step = (feature_score_max - feature_score_min) / 20.
- #feature_score_bins = np.arange(feature_score_min, feature_score_max, step)
- #axes[1][1].hist(feature_score_arr, bins=feature_score_bins)
- im = axes[1][1].imshow(mv_mode_arr)
- #axes[1][1].figure.colorbar(im, ax=axes[1][1])
- print rf_idx, frame_idx, ref_frame_idx, gf_frame_offset, ref_gf_frame_offset, len(mv_ls)
- flatten_mv_mode = mv_mode_arr.flatten()
- zero_mv_count = sum(flatten_mv_mode == 0);
- new_mv_count = sum(flatten_mv_mode == 1);
- ref_mv_count = sum(flatten_mv_mode == 2) + sum(flatten_mv_mode == 3);
- print zero_mv_count, new_mv_count, ref_mv_count
- plt.show()
|