123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387 |
- /*
- * Copyright (c) 2017 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
- #include <arm_neon.h>
- #include "./vpx_config.h"
- #include "./vpx_dsp_rtcd.h"
- #include "vpx_dsp/txfm_common.h"
- #include "vpx_dsp/arm/mem_neon.h"
- #include "vpx_dsp/arm/transpose_neon.h"
- // Some builds of gcc 4.9.2 and .3 have trouble with some of the inline
- // functions.
- #if !defined(__clang__) && !defined(__ANDROID__) && defined(__GNUC__) && \
- __GNUC__ == 4 && __GNUC_MINOR__ == 9 && __GNUC_PATCHLEVEL__ < 4
- void vpx_fdct16x16_neon(const int16_t *input, tran_low_t *output, int stride) {
- vpx_fdct16x16_c(input, output, stride);
- }
- #else
- static INLINE void load(const int16_t *a, int stride, int16x8_t *b /*[16]*/) {
- b[0] = vld1q_s16(a);
- a += stride;
- b[1] = vld1q_s16(a);
- a += stride;
- b[2] = vld1q_s16(a);
- a += stride;
- b[3] = vld1q_s16(a);
- a += stride;
- b[4] = vld1q_s16(a);
- a += stride;
- b[5] = vld1q_s16(a);
- a += stride;
- b[6] = vld1q_s16(a);
- a += stride;
- b[7] = vld1q_s16(a);
- a += stride;
- b[8] = vld1q_s16(a);
- a += stride;
- b[9] = vld1q_s16(a);
- a += stride;
- b[10] = vld1q_s16(a);
- a += stride;
- b[11] = vld1q_s16(a);
- a += stride;
- b[12] = vld1q_s16(a);
- a += stride;
- b[13] = vld1q_s16(a);
- a += stride;
- b[14] = vld1q_s16(a);
- a += stride;
- b[15] = vld1q_s16(a);
- }
- // Store 8 16x8 values, assuming stride == 16.
- static INLINE void store(tran_low_t *a, const int16x8_t *b /*[8]*/) {
- store_s16q_to_tran_low(a, b[0]);
- a += 16;
- store_s16q_to_tran_low(a, b[1]);
- a += 16;
- store_s16q_to_tran_low(a, b[2]);
- a += 16;
- store_s16q_to_tran_low(a, b[3]);
- a += 16;
- store_s16q_to_tran_low(a, b[4]);
- a += 16;
- store_s16q_to_tran_low(a, b[5]);
- a += 16;
- store_s16q_to_tran_low(a, b[6]);
- a += 16;
- store_s16q_to_tran_low(a, b[7]);
- }
- // Load step of each pass. Add and subtract clear across the input, requiring
- // all 16 values to be loaded. For the first pass it also multiplies by 4.
- // To maybe reduce register usage this could be combined with the load() step to
- // get the first 4 and last 4 values, cross those, then load the middle 8 values
- // and cross them.
- static INLINE void cross_input(const int16x8_t *a /*[16]*/,
- int16x8_t *b /*[16]*/, const int pass) {
- if (pass == 0) {
- b[0] = vshlq_n_s16(vaddq_s16(a[0], a[15]), 2);
- b[1] = vshlq_n_s16(vaddq_s16(a[1], a[14]), 2);
- b[2] = vshlq_n_s16(vaddq_s16(a[2], a[13]), 2);
- b[3] = vshlq_n_s16(vaddq_s16(a[3], a[12]), 2);
- b[4] = vshlq_n_s16(vaddq_s16(a[4], a[11]), 2);
- b[5] = vshlq_n_s16(vaddq_s16(a[5], a[10]), 2);
- b[6] = vshlq_n_s16(vaddq_s16(a[6], a[9]), 2);
- b[7] = vshlq_n_s16(vaddq_s16(a[7], a[8]), 2);
- b[8] = vshlq_n_s16(vsubq_s16(a[7], a[8]), 2);
- b[9] = vshlq_n_s16(vsubq_s16(a[6], a[9]), 2);
- b[10] = vshlq_n_s16(vsubq_s16(a[5], a[10]), 2);
- b[11] = vshlq_n_s16(vsubq_s16(a[4], a[11]), 2);
- b[12] = vshlq_n_s16(vsubq_s16(a[3], a[12]), 2);
- b[13] = vshlq_n_s16(vsubq_s16(a[2], a[13]), 2);
- b[14] = vshlq_n_s16(vsubq_s16(a[1], a[14]), 2);
- b[15] = vshlq_n_s16(vsubq_s16(a[0], a[15]), 2);
- } else {
- b[0] = vaddq_s16(a[0], a[15]);
- b[1] = vaddq_s16(a[1], a[14]);
- b[2] = vaddq_s16(a[2], a[13]);
- b[3] = vaddq_s16(a[3], a[12]);
- b[4] = vaddq_s16(a[4], a[11]);
- b[5] = vaddq_s16(a[5], a[10]);
- b[6] = vaddq_s16(a[6], a[9]);
- b[7] = vaddq_s16(a[7], a[8]);
- b[8] = vsubq_s16(a[7], a[8]);
- b[9] = vsubq_s16(a[6], a[9]);
- b[10] = vsubq_s16(a[5], a[10]);
- b[11] = vsubq_s16(a[4], a[11]);
- b[12] = vsubq_s16(a[3], a[12]);
- b[13] = vsubq_s16(a[2], a[13]);
- b[14] = vsubq_s16(a[1], a[14]);
- b[15] = vsubq_s16(a[0], a[15]);
- }
- }
- // Quarter round at the beginning of the second pass. Can't use vrshr (rounding)
- // because this only adds 1, not 1 << 2.
- static INLINE void partial_round_shift(int16x8_t *a /*[16]*/) {
- const int16x8_t one = vdupq_n_s16(1);
- a[0] = vshrq_n_s16(vaddq_s16(a[0], one), 2);
- a[1] = vshrq_n_s16(vaddq_s16(a[1], one), 2);
- a[2] = vshrq_n_s16(vaddq_s16(a[2], one), 2);
- a[3] = vshrq_n_s16(vaddq_s16(a[3], one), 2);
- a[4] = vshrq_n_s16(vaddq_s16(a[4], one), 2);
- a[5] = vshrq_n_s16(vaddq_s16(a[5], one), 2);
- a[6] = vshrq_n_s16(vaddq_s16(a[6], one), 2);
- a[7] = vshrq_n_s16(vaddq_s16(a[7], one), 2);
- a[8] = vshrq_n_s16(vaddq_s16(a[8], one), 2);
- a[9] = vshrq_n_s16(vaddq_s16(a[9], one), 2);
- a[10] = vshrq_n_s16(vaddq_s16(a[10], one), 2);
- a[11] = vshrq_n_s16(vaddq_s16(a[11], one), 2);
- a[12] = vshrq_n_s16(vaddq_s16(a[12], one), 2);
- a[13] = vshrq_n_s16(vaddq_s16(a[13], one), 2);
- a[14] = vshrq_n_s16(vaddq_s16(a[14], one), 2);
- a[15] = vshrq_n_s16(vaddq_s16(a[15], one), 2);
- }
- // fdct_round_shift((a +/- b) * c)
- static INLINE void butterfly_one_coeff(const int16x8_t a, const int16x8_t b,
- const tran_high_t c, int16x8_t *add,
- int16x8_t *sub) {
- const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), c);
- const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), c);
- const int32x4_t sum0 = vmlal_n_s16(a0, vget_low_s16(b), c);
- const int32x4_t sum1 = vmlal_n_s16(a1, vget_high_s16(b), c);
- const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), c);
- const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), c);
- const int16x4_t rounded0 = vqrshrn_n_s32(sum0, 14);
- const int16x4_t rounded1 = vqrshrn_n_s32(sum1, 14);
- const int16x4_t rounded2 = vqrshrn_n_s32(diff0, 14);
- const int16x4_t rounded3 = vqrshrn_n_s32(diff1, 14);
- *add = vcombine_s16(rounded0, rounded1);
- *sub = vcombine_s16(rounded2, rounded3);
- }
- // fdct_round_shift(a * c0 +/- b * c1)
- static INLINE void butterfly_two_coeff(const int16x8_t a, const int16x8_t b,
- const tran_coef_t c0,
- const tran_coef_t c1, int16x8_t *add,
- int16x8_t *sub) {
- const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), c0);
- const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), c0);
- const int32x4_t a2 = vmull_n_s16(vget_low_s16(a), c1);
- const int32x4_t a3 = vmull_n_s16(vget_high_s16(a), c1);
- const int32x4_t sum0 = vmlal_n_s16(a2, vget_low_s16(b), c0);
- const int32x4_t sum1 = vmlal_n_s16(a3, vget_high_s16(b), c0);
- const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), c1);
- const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), c1);
- const int16x4_t rounded0 = vqrshrn_n_s32(sum0, 14);
- const int16x4_t rounded1 = vqrshrn_n_s32(sum1, 14);
- const int16x4_t rounded2 = vqrshrn_n_s32(diff0, 14);
- const int16x4_t rounded3 = vqrshrn_n_s32(diff1, 14);
- *add = vcombine_s16(rounded0, rounded1);
- *sub = vcombine_s16(rounded2, rounded3);
- }
- // Transpose 8x8 to a new location. Don't use transpose_neon.h because those
- // are all in-place.
- static INLINE void transpose_8x8(const int16x8_t *a /*[8]*/,
- int16x8_t *b /*[8]*/) {
- // Swap 16 bit elements.
- const int16x8x2_t c0 = vtrnq_s16(a[0], a[1]);
- const int16x8x2_t c1 = vtrnq_s16(a[2], a[3]);
- const int16x8x2_t c2 = vtrnq_s16(a[4], a[5]);
- const int16x8x2_t c3 = vtrnq_s16(a[6], a[7]);
- // Swap 32 bit elements.
- const int32x4x2_t d0 = vtrnq_s32(vreinterpretq_s32_s16(c0.val[0]),
- vreinterpretq_s32_s16(c1.val[0]));
- const int32x4x2_t d1 = vtrnq_s32(vreinterpretq_s32_s16(c0.val[1]),
- vreinterpretq_s32_s16(c1.val[1]));
- const int32x4x2_t d2 = vtrnq_s32(vreinterpretq_s32_s16(c2.val[0]),
- vreinterpretq_s32_s16(c3.val[0]));
- const int32x4x2_t d3 = vtrnq_s32(vreinterpretq_s32_s16(c2.val[1]),
- vreinterpretq_s32_s16(c3.val[1]));
- // Swap 64 bit elements
- const int16x8x2_t e0 = vpx_vtrnq_s64_to_s16(d0.val[0], d2.val[0]);
- const int16x8x2_t e1 = vpx_vtrnq_s64_to_s16(d1.val[0], d3.val[0]);
- const int16x8x2_t e2 = vpx_vtrnq_s64_to_s16(d0.val[1], d2.val[1]);
- const int16x8x2_t e3 = vpx_vtrnq_s64_to_s16(d1.val[1], d3.val[1]);
- b[0] = e0.val[0];
- b[1] = e1.val[0];
- b[2] = e2.val[0];
- b[3] = e3.val[0];
- b[4] = e0.val[1];
- b[5] = e1.val[1];
- b[6] = e2.val[1];
- b[7] = e3.val[1];
- }
- // Main body of fdct16x16.
- static void dct_body(const int16x8_t *in /*[16]*/, int16x8_t *out /*[16]*/) {
- int16x8_t s[8];
- int16x8_t x[4];
- int16x8_t step[8];
- // stage 1
- // From fwd_txfm.c: Work on the first eight values; fdct8(input,
- // even_results);"
- s[0] = vaddq_s16(in[0], in[7]);
- s[1] = vaddq_s16(in[1], in[6]);
- s[2] = vaddq_s16(in[2], in[5]);
- s[3] = vaddq_s16(in[3], in[4]);
- s[4] = vsubq_s16(in[3], in[4]);
- s[5] = vsubq_s16(in[2], in[5]);
- s[6] = vsubq_s16(in[1], in[6]);
- s[7] = vsubq_s16(in[0], in[7]);
- // fdct4(step, step);
- x[0] = vaddq_s16(s[0], s[3]);
- x[1] = vaddq_s16(s[1], s[2]);
- x[2] = vsubq_s16(s[1], s[2]);
- x[3] = vsubq_s16(s[0], s[3]);
- // out[0] = fdct_round_shift((x0 + x1) * cospi_16_64)
- // out[8] = fdct_round_shift((x0 - x1) * cospi_16_64)
- butterfly_one_coeff(x[0], x[1], cospi_16_64, &out[0], &out[8]);
- // out[4] = fdct_round_shift(x3 * cospi_8_64 + x2 * cospi_24_64);
- // out[12] = fdct_round_shift(x3 * cospi_24_64 - x2 * cospi_8_64);
- butterfly_two_coeff(x[3], x[2], cospi_24_64, cospi_8_64, &out[4], &out[12]);
- // Stage 2
- // Re-using source s5/s6
- // s5 = fdct_round_shift((s6 - s5) * cospi_16_64)
- // s6 = fdct_round_shift((s6 + s5) * cospi_16_64)
- butterfly_one_coeff(s[6], s[5], cospi_16_64, &s[6], &s[5]);
- // Stage 3
- x[0] = vaddq_s16(s[4], s[5]);
- x[1] = vsubq_s16(s[4], s[5]);
- x[2] = vsubq_s16(s[7], s[6]);
- x[3] = vaddq_s16(s[7], s[6]);
- // Stage 4
- // out[2] = fdct_round_shift(x0 * cospi_28_64 + x3 * cospi_4_64)
- // out[14] = fdct_round_shift(x3 * cospi_28_64 + x0 * -cospi_4_64)
- butterfly_two_coeff(x[3], x[0], cospi_28_64, cospi_4_64, &out[2], &out[14]);
- // out[6] = fdct_round_shift(x1 * cospi_12_64 + x2 * cospi_20_64)
- // out[10] = fdct_round_shift(x2 * cospi_12_64 + x1 * -cospi_20_64)
- butterfly_two_coeff(x[2], x[1], cospi_12_64, cospi_20_64, &out[10], &out[6]);
- // step 2
- // From fwd_txfm.c: Work on the next eight values; step1 -> odd_results"
- // That file distinguished between "in_high" and "step1" but the only
- // difference is that "in_high" is the first 8 values and "step 1" is the
- // second. Here, since they are all in one array, "step1" values are += 8.
- // step2[2] = fdct_round_shift((step1[5] - step1[2]) * cospi_16_64)
- // step2[3] = fdct_round_shift((step1[4] - step1[3]) * cospi_16_64)
- // step2[4] = fdct_round_shift((step1[4] + step1[3]) * cospi_16_64)
- // step2[5] = fdct_round_shift((step1[5] + step1[2]) * cospi_16_64)
- butterfly_one_coeff(in[13], in[10], cospi_16_64, &s[5], &s[2]);
- butterfly_one_coeff(in[12], in[11], cospi_16_64, &s[4], &s[3]);
- // step 3
- s[0] = vaddq_s16(in[8], s[3]);
- s[1] = vaddq_s16(in[9], s[2]);
- x[0] = vsubq_s16(in[9], s[2]);
- x[1] = vsubq_s16(in[8], s[3]);
- x[2] = vsubq_s16(in[15], s[4]);
- x[3] = vsubq_s16(in[14], s[5]);
- s[6] = vaddq_s16(in[14], s[5]);
- s[7] = vaddq_s16(in[15], s[4]);
- // step 4
- // step2[1] = fdct_round_shift(step3[1] *-cospi_8_64 + step3[6] * cospi_24_64)
- // step2[6] = fdct_round_shift(step3[1] * cospi_24_64 + step3[6] * cospi_8_64)
- butterfly_two_coeff(s[6], s[1], cospi_24_64, cospi_8_64, &s[6], &s[1]);
- // step2[2] = fdct_round_shift(step3[2] * cospi_24_64 + step3[5] * cospi_8_64)
- // step2[5] = fdct_round_shift(step3[2] * cospi_8_64 - step3[5] * cospi_24_64)
- butterfly_two_coeff(x[0], x[3], cospi_8_64, cospi_24_64, &s[2], &s[5]);
- // step 5
- step[0] = vaddq_s16(s[0], s[1]);
- step[1] = vsubq_s16(s[0], s[1]);
- step[2] = vaddq_s16(x[1], s[2]);
- step[3] = vsubq_s16(x[1], s[2]);
- step[4] = vsubq_s16(x[2], s[5]);
- step[5] = vaddq_s16(x[2], s[5]);
- step[6] = vsubq_s16(s[7], s[6]);
- step[7] = vaddq_s16(s[7], s[6]);
- // step 6
- // out[1] = fdct_round_shift(step1[0] * cospi_30_64 + step1[7] * cospi_2_64)
- // out[9] = fdct_round_shift(step1[1] * cospi_14_64 + step1[6] * cospi_18_64)
- // out[5] = fdct_round_shift(step1[2] * cospi_22_64 + step1[5] * cospi_10_64)
- // out[13] = fdct_round_shift(step1[3] * cospi_6_64 + step1[4] * cospi_26_64)
- // out[3] = fdct_round_shift(step1[3] * -cospi_26_64 + step1[4] * cospi_6_64)
- // out[11] = fdct_round_shift(step1[2] * -cospi_10_64 + step1[5] *
- // cospi_22_64)
- // out[7] = fdct_round_shift(step1[1] * -cospi_18_64 + step1[6] * cospi_14_64)
- // out[15] = fdct_round_shift(step1[0] * -cospi_2_64 + step1[7] * cospi_30_64)
- butterfly_two_coeff(step[6], step[1], cospi_14_64, cospi_18_64, &out[9],
- &out[7]);
- butterfly_two_coeff(step[7], step[0], cospi_30_64, cospi_2_64, &out[1],
- &out[15]);
- butterfly_two_coeff(step[4], step[3], cospi_6_64, cospi_26_64, &out[13],
- &out[3]);
- butterfly_two_coeff(step[5], step[2], cospi_22_64, cospi_10_64, &out[5],
- &out[11]);
- }
- void vpx_fdct16x16_neon(const int16_t *input, tran_low_t *output, int stride) {
- int16x8_t temp0[16];
- int16x8_t temp1[16];
- int16x8_t temp2[16];
- int16x8_t temp3[16];
- // Left half.
- load(input, stride, temp0);
- cross_input(temp0, temp1, 0);
- dct_body(temp1, temp0);
- // Right half.
- load(input + 8, stride, temp1);
- cross_input(temp1, temp2, 0);
- dct_body(temp2, temp1);
- // Transpose top left and top right quarters into one contiguous location to
- // process to the top half.
- transpose_8x8(&temp0[0], &temp2[0]);
- transpose_8x8(&temp1[0], &temp2[8]);
- partial_round_shift(temp2);
- cross_input(temp2, temp3, 1);
- dct_body(temp3, temp2);
- transpose_s16_8x8(&temp2[0], &temp2[1], &temp2[2], &temp2[3], &temp2[4],
- &temp2[5], &temp2[6], &temp2[7]);
- transpose_s16_8x8(&temp2[8], &temp2[9], &temp2[10], &temp2[11], &temp2[12],
- &temp2[13], &temp2[14], &temp2[15]);
- store(output, temp2);
- store(output + 8, temp2 + 8);
- output += 8 * 16;
- // Transpose bottom left and bottom right quarters into one contiguous
- // location to process to the bottom half.
- transpose_8x8(&temp0[8], &temp1[0]);
- transpose_s16_8x8(&temp1[8], &temp1[9], &temp1[10], &temp1[11], &temp1[12],
- &temp1[13], &temp1[14], &temp1[15]);
- partial_round_shift(temp1);
- cross_input(temp1, temp0, 1);
- dct_body(temp0, temp1);
- transpose_s16_8x8(&temp1[0], &temp1[1], &temp1[2], &temp1[3], &temp1[4],
- &temp1[5], &temp1[6], &temp1[7]);
- transpose_s16_8x8(&temp1[8], &temp1[9], &temp1[10], &temp1[11], &temp1[12],
- &temp1[13], &temp1[14], &temp1[15]);
- store(output, temp1);
- store(output + 8, temp1 + 8);
- }
- #endif // !defined(__clang__) && !defined(__ANDROID__) && defined(__GNUC__) &&
- // __GNUC__ == 4 && __GNUC_MINOR__ == 9 && __GNUC_PATCHLEVEL__ < 4
|