1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087 |
- /*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
- #include <tmmintrin.h> // SSSE3
- #include <string.h>
- #include "./vpx_config.h"
- #include "./vpx_dsp_rtcd.h"
- #include "vpx_dsp/vpx_filter.h"
- #include "vpx_dsp/x86/convolve.h"
- #include "vpx_dsp/x86/convolve_sse2.h"
- #include "vpx_dsp/x86/convolve_ssse3.h"
- #include "vpx_dsp/x86/mem_sse2.h"
- #include "vpx_dsp/x86/transpose_sse2.h"
- #include "vpx_mem/vpx_mem.h"
- #include "vpx_ports/mem.h"
- static INLINE __m128i shuffle_filter_convolve8_8_ssse3(
- const __m128i *const s, const int16_t *const filter) {
- __m128i f[4];
- shuffle_filter_ssse3(filter, f);
- return convolve8_8_ssse3(s, f);
- }
- // Used by the avx2 implementation.
- #if ARCH_X86_64
- // Use the intrinsics below
- filter8_1dfunction vpx_filter_block1d4_h8_intrin_ssse3;
- filter8_1dfunction vpx_filter_block1d8_h8_intrin_ssse3;
- filter8_1dfunction vpx_filter_block1d8_v8_intrin_ssse3;
- #define vpx_filter_block1d4_h8_ssse3 vpx_filter_block1d4_h8_intrin_ssse3
- #define vpx_filter_block1d8_h8_ssse3 vpx_filter_block1d8_h8_intrin_ssse3
- #define vpx_filter_block1d8_v8_ssse3 vpx_filter_block1d8_v8_intrin_ssse3
- #else // ARCH_X86
- // Use the assembly in vpx_dsp/x86/vpx_subpixel_8t_ssse3.asm.
- filter8_1dfunction vpx_filter_block1d4_h8_ssse3;
- filter8_1dfunction vpx_filter_block1d8_h8_ssse3;
- filter8_1dfunction vpx_filter_block1d8_v8_ssse3;
- #endif
- #if ARCH_X86_64
- void vpx_filter_block1d4_h8_intrin_ssse3(
- const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
- ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
- __m128i firstFilters, secondFilters, shuffle1, shuffle2;
- __m128i srcRegFilt1, srcRegFilt2;
- __m128i addFilterReg64, filtersReg, srcReg;
- unsigned int i;
- // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
- addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
- filtersReg = _mm_loadu_si128((const __m128i *)filter);
- // converting the 16 bit (short) to 8 bit (byte) and have the same data
- // in both lanes of 128 bit register.
- filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
- // duplicate only the first 16 bits in the filter into the first lane
- firstFilters = _mm_shufflelo_epi16(filtersReg, 0);
- // duplicate only the third 16 bit in the filter into the first lane
- secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu);
- // duplicate only the seconds 16 bits in the filter into the second lane
- // firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3
- firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u);
- // duplicate only the forth 16 bits in the filter into the second lane
- // secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7
- secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu);
- // loading the local filters
- shuffle1 = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6);
- shuffle2 = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10);
- for (i = 0; i < output_height; i++) {
- srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
- // filter the source buffer
- srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1);
- srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2);
- // multiply 2 adjacent elements with the filter and add the result
- srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
- srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
- // sum the results together, saturating only on the final step
- // the specific order of the additions prevents outranges
- srcRegFilt1 = _mm_add_epi16(srcRegFilt1, srcRegFilt2);
- // extract the higher half of the register
- srcRegFilt2 = _mm_srli_si128(srcRegFilt1, 8);
- // add the rounding offset early to avoid another saturated add
- srcRegFilt1 = _mm_add_epi16(srcRegFilt1, addFilterReg64);
- srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
- // shift by 7 bit each 16 bits
- srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
- // shrink to 8 bit each 16 bits
- srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
- src_ptr += src_pitch;
- // save only 4 bytes
- *((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1);
- output_ptr += output_pitch;
- }
- }
- void vpx_filter_block1d8_h8_intrin_ssse3(
- const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
- ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
- unsigned int i;
- __m128i f[4], filt[4], s[4];
- shuffle_filter_ssse3(filter, f);
- filt[0] = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8);
- filt[1] = _mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10);
- filt[2] = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12);
- filt[3] =
- _mm_setr_epi8(6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14);
- for (i = 0; i < output_height; i++) {
- const __m128i srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
- // filter the source buffer
- s[0] = _mm_shuffle_epi8(srcReg, filt[0]);
- s[1] = _mm_shuffle_epi8(srcReg, filt[1]);
- s[2] = _mm_shuffle_epi8(srcReg, filt[2]);
- s[3] = _mm_shuffle_epi8(srcReg, filt[3]);
- s[0] = convolve8_8_ssse3(s, f);
- // shrink to 8 bit each 16 bits
- s[0] = _mm_packus_epi16(s[0], s[0]);
- src_ptr += src_pitch;
- // save only 8 bytes
- _mm_storel_epi64((__m128i *)&output_ptr[0], s[0]);
- output_ptr += output_pitch;
- }
- }
- void vpx_filter_block1d8_v8_intrin_ssse3(
- const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
- ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
- unsigned int i;
- __m128i f[4], s[8], ss[4];
- shuffle_filter_ssse3(filter, f);
- // load the first 7 rows of 8 bytes
- s[0] = _mm_loadl_epi64((const __m128i *)(src_ptr + 0 * src_pitch));
- s[1] = _mm_loadl_epi64((const __m128i *)(src_ptr + 1 * src_pitch));
- s[2] = _mm_loadl_epi64((const __m128i *)(src_ptr + 2 * src_pitch));
- s[3] = _mm_loadl_epi64((const __m128i *)(src_ptr + 3 * src_pitch));
- s[4] = _mm_loadl_epi64((const __m128i *)(src_ptr + 4 * src_pitch));
- s[5] = _mm_loadl_epi64((const __m128i *)(src_ptr + 5 * src_pitch));
- s[6] = _mm_loadl_epi64((const __m128i *)(src_ptr + 6 * src_pitch));
- for (i = 0; i < output_height; i++) {
- // load the last 8 bytes
- s[7] = _mm_loadl_epi64((const __m128i *)(src_ptr + 7 * src_pitch));
- // merge the result together
- ss[0] = _mm_unpacklo_epi8(s[0], s[1]);
- ss[1] = _mm_unpacklo_epi8(s[2], s[3]);
- // merge the result together
- ss[2] = _mm_unpacklo_epi8(s[4], s[5]);
- ss[3] = _mm_unpacklo_epi8(s[6], s[7]);
- ss[0] = convolve8_8_ssse3(ss, f);
- // shrink to 8 bit each 16 bits
- ss[0] = _mm_packus_epi16(ss[0], ss[0]);
- src_ptr += src_pitch;
- // shift down a row
- s[0] = s[1];
- s[1] = s[2];
- s[2] = s[3];
- s[3] = s[4];
- s[4] = s[5];
- s[5] = s[6];
- s[6] = s[7];
- // save only 8 bytes convolve result
- _mm_storel_epi64((__m128i *)&output_ptr[0], ss[0]);
- output_ptr += out_pitch;
- }
- }
- #endif // ARCH_X86_64
- static void vpx_filter_block1d16_h4_ssse3(const uint8_t *src_ptr,
- ptrdiff_t src_stride,
- uint8_t *dst_ptr,
- ptrdiff_t dst_stride, uint32_t height,
- const int16_t *kernel) {
- // We will cast the kernel from 16-bit words to 8-bit words, and then extract
- // the middle four elements of the kernel into two registers in the form
- // ... k[3] k[2] k[3] k[2]
- // ... k[5] k[4] k[5] k[4]
- // Then we shuffle the source into
- // ... s[1] s[0] s[0] s[-1]
- // ... s[3] s[2] s[2] s[1]
- // Calling multiply and add gives us half of the sum. Calling add gives us
- // first half of the output. Repeat again to get the second half of the
- // output. Finally we shuffle again to combine the two outputs.
- __m128i kernel_reg; // Kernel
- __m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used
- const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
- int h;
- __m128i src_reg, src_reg_shift_0, src_reg_shift_2;
- __m128i dst_first, dst_second;
- __m128i tmp_0, tmp_1;
- __m128i idx_shift_0 =
- _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8);
- __m128i idx_shift_2 =
- _mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10);
- // Start one pixel before as we need tap/2 - 1 = 1 sample from the past
- src_ptr -= 1;
- // Load Kernel
- kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
- kernel_reg = _mm_srai_epi16(kernel_reg, 1);
- kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
- kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u));
- kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u));
- for (h = height; h > 0; --h) {
- // Load the source
- src_reg = _mm_loadu_si128((const __m128i *)src_ptr);
- src_reg_shift_0 = _mm_shuffle_epi8(src_reg, idx_shift_0);
- src_reg_shift_2 = _mm_shuffle_epi8(src_reg, idx_shift_2);
- // Partial result for first half
- tmp_0 = _mm_maddubs_epi16(src_reg_shift_0, kernel_reg_23);
- tmp_1 = _mm_maddubs_epi16(src_reg_shift_2, kernel_reg_45);
- dst_first = _mm_adds_epi16(tmp_0, tmp_1);
- // Do again to get the second half of dst
- // Load the source
- src_reg = _mm_loadu_si128((const __m128i *)(src_ptr + 8));
- src_reg_shift_0 = _mm_shuffle_epi8(src_reg, idx_shift_0);
- src_reg_shift_2 = _mm_shuffle_epi8(src_reg, idx_shift_2);
- // Partial result for first half
- tmp_0 = _mm_maddubs_epi16(src_reg_shift_0, kernel_reg_23);
- tmp_1 = _mm_maddubs_epi16(src_reg_shift_2, kernel_reg_45);
- dst_second = _mm_adds_epi16(tmp_0, tmp_1);
- // Round each result
- dst_first = mm_round_epi16_sse2(&dst_first, ®_32, 6);
- dst_second = mm_round_epi16_sse2(&dst_second, ®_32, 6);
- // Finally combine to get the final dst
- dst_first = _mm_packus_epi16(dst_first, dst_second);
- _mm_store_si128((__m128i *)dst_ptr, dst_first);
- src_ptr += src_stride;
- dst_ptr += dst_stride;
- }
- }
- static void vpx_filter_block1d16_v4_ssse3(const uint8_t *src_ptr,
- ptrdiff_t src_stride,
- uint8_t *dst_ptr,
- ptrdiff_t dst_stride, uint32_t height,
- const int16_t *kernel) {
- // We will load two rows of pixels as 8-bit words, rearrange them into the
- // form
- // ... s[0,1] s[-1,1] s[0,0] s[-1,0]
- // ... s[0,9] s[-1,9] s[0,8] s[-1,8]
- // so that we can call multiply and add with the kernel to get 16-bit words of
- // the form
- // ... s[0,1]k[3]+s[-1,1]k[2] s[0,0]k[3]+s[-1,0]k[2]
- // Finally, we can add multiple rows together to get the desired output.
- // Register for source s[-1:3, :]
- __m128i src_reg_m1, src_reg_0, src_reg_1, src_reg_2, src_reg_3;
- // Interleaved rows of the source. lo is first half, hi second
- __m128i src_reg_m10_lo, src_reg_m10_hi, src_reg_01_lo, src_reg_01_hi;
- __m128i src_reg_12_lo, src_reg_12_hi, src_reg_23_lo, src_reg_23_hi;
- __m128i kernel_reg; // Kernel
- __m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used
- // Result after multiply and add
- __m128i res_reg_m10_lo, res_reg_01_lo, res_reg_12_lo, res_reg_23_lo;
- __m128i res_reg_m10_hi, res_reg_01_hi, res_reg_12_hi, res_reg_23_hi;
- __m128i res_reg_m1012, res_reg_0123;
- __m128i res_reg_m1012_lo, res_reg_0123_lo, res_reg_m1012_hi, res_reg_0123_hi;
- const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
- // We will compute the result two rows at a time
- const ptrdiff_t src_stride_unrolled = src_stride << 1;
- const ptrdiff_t dst_stride_unrolled = dst_stride << 1;
- int h;
- // Load Kernel
- kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
- kernel_reg = _mm_srai_epi16(kernel_reg, 1);
- kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
- kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u));
- kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u));
- // First shuffle the data
- src_reg_m1 = _mm_loadu_si128((const __m128i *)src_ptr);
- src_reg_0 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride));
- src_reg_m10_lo = _mm_unpacklo_epi8(src_reg_m1, src_reg_0);
- src_reg_m10_hi = _mm_unpackhi_epi8(src_reg_m1, src_reg_0);
- // More shuffling
- src_reg_1 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 2));
- src_reg_01_lo = _mm_unpacklo_epi8(src_reg_0, src_reg_1);
- src_reg_01_hi = _mm_unpackhi_epi8(src_reg_0, src_reg_1);
- for (h = height; h > 1; h -= 2) {
- src_reg_2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 3));
- src_reg_12_lo = _mm_unpacklo_epi8(src_reg_1, src_reg_2);
- src_reg_12_hi = _mm_unpackhi_epi8(src_reg_1, src_reg_2);
- src_reg_3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 4));
- src_reg_23_lo = _mm_unpacklo_epi8(src_reg_2, src_reg_3);
- src_reg_23_hi = _mm_unpackhi_epi8(src_reg_2, src_reg_3);
- // Partial output from first half
- res_reg_m10_lo = _mm_maddubs_epi16(src_reg_m10_lo, kernel_reg_23);
- res_reg_01_lo = _mm_maddubs_epi16(src_reg_01_lo, kernel_reg_23);
- res_reg_12_lo = _mm_maddubs_epi16(src_reg_12_lo, kernel_reg_45);
- res_reg_23_lo = _mm_maddubs_epi16(src_reg_23_lo, kernel_reg_45);
- // Add to get first half of the results
- res_reg_m1012_lo = _mm_adds_epi16(res_reg_m10_lo, res_reg_12_lo);
- res_reg_0123_lo = _mm_adds_epi16(res_reg_01_lo, res_reg_23_lo);
- // Partial output for second half
- res_reg_m10_hi = _mm_maddubs_epi16(src_reg_m10_hi, kernel_reg_23);
- res_reg_01_hi = _mm_maddubs_epi16(src_reg_01_hi, kernel_reg_23);
- res_reg_12_hi = _mm_maddubs_epi16(src_reg_12_hi, kernel_reg_45);
- res_reg_23_hi = _mm_maddubs_epi16(src_reg_23_hi, kernel_reg_45);
- // Second half of the results
- res_reg_m1012_hi = _mm_adds_epi16(res_reg_m10_hi, res_reg_12_hi);
- res_reg_0123_hi = _mm_adds_epi16(res_reg_01_hi, res_reg_23_hi);
- // Round the words
- res_reg_m1012_lo = mm_round_epi16_sse2(&res_reg_m1012_lo, ®_32, 6);
- res_reg_0123_lo = mm_round_epi16_sse2(&res_reg_0123_lo, ®_32, 6);
- res_reg_m1012_hi = mm_round_epi16_sse2(&res_reg_m1012_hi, ®_32, 6);
- res_reg_0123_hi = mm_round_epi16_sse2(&res_reg_0123_hi, ®_32, 6);
- // Combine to get the result
- res_reg_m1012 = _mm_packus_epi16(res_reg_m1012_lo, res_reg_m1012_hi);
- res_reg_0123 = _mm_packus_epi16(res_reg_0123_lo, res_reg_0123_hi);
- _mm_store_si128((__m128i *)dst_ptr, res_reg_m1012);
- _mm_store_si128((__m128i *)(dst_ptr + dst_stride), res_reg_0123);
- // Update the source by two rows
- src_ptr += src_stride_unrolled;
- dst_ptr += dst_stride_unrolled;
- src_reg_m10_lo = src_reg_12_lo;
- src_reg_m10_hi = src_reg_12_hi;
- src_reg_01_lo = src_reg_23_lo;
- src_reg_01_hi = src_reg_23_hi;
- src_reg_1 = src_reg_3;
- }
- }
- static void vpx_filter_block1d8_h4_ssse3(const uint8_t *src_ptr,
- ptrdiff_t src_stride, uint8_t *dst_ptr,
- ptrdiff_t dst_stride, uint32_t height,
- const int16_t *kernel) {
- // We will cast the kernel from 16-bit words to 8-bit words, and then extract
- // the middle four elements of the kernel into two registers in the form
- // ... k[3] k[2] k[3] k[2]
- // ... k[5] k[4] k[5] k[4]
- // Then we shuffle the source into
- // ... s[1] s[0] s[0] s[-1]
- // ... s[3] s[2] s[2] s[1]
- // Calling multiply and add gives us half of the sum. Calling add gives us
- // first half of the output. Repeat again to get the second half of the
- // output. Finally we shuffle again to combine the two outputs.
- __m128i kernel_reg; // Kernel
- __m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used
- const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
- int h;
- __m128i src_reg, src_reg_shift_0, src_reg_shift_2;
- __m128i dst_first;
- __m128i tmp_0, tmp_1;
- __m128i idx_shift_0 =
- _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8);
- __m128i idx_shift_2 =
- _mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10);
- // Start one pixel before as we need tap/2 - 1 = 1 sample from the past
- src_ptr -= 1;
- // Load Kernel
- kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
- kernel_reg = _mm_srai_epi16(kernel_reg, 1);
- kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
- kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u));
- kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u));
- for (h = height; h > 0; --h) {
- // Load the source
- src_reg = _mm_loadu_si128((const __m128i *)src_ptr);
- src_reg_shift_0 = _mm_shuffle_epi8(src_reg, idx_shift_0);
- src_reg_shift_2 = _mm_shuffle_epi8(src_reg, idx_shift_2);
- // Get the result
- tmp_0 = _mm_maddubs_epi16(src_reg_shift_0, kernel_reg_23);
- tmp_1 = _mm_maddubs_epi16(src_reg_shift_2, kernel_reg_45);
- dst_first = _mm_adds_epi16(tmp_0, tmp_1);
- // Round round result
- dst_first = mm_round_epi16_sse2(&dst_first, ®_32, 6);
- // Pack to 8-bits
- dst_first = _mm_packus_epi16(dst_first, _mm_setzero_si128());
- _mm_storel_epi64((__m128i *)dst_ptr, dst_first);
- src_ptr += src_stride;
- dst_ptr += dst_stride;
- }
- }
- static void vpx_filter_block1d8_v4_ssse3(const uint8_t *src_ptr,
- ptrdiff_t src_stride, uint8_t *dst_ptr,
- ptrdiff_t dst_stride, uint32_t height,
- const int16_t *kernel) {
- // We will load two rows of pixels as 8-bit words, rearrange them into the
- // form
- // ... s[0,1] s[-1,1] s[0,0] s[-1,0]
- // so that we can call multiply and add with the kernel to get 16-bit words of
- // the form
- // ... s[0,1]k[3]+s[-1,1]k[2] s[0,0]k[3]+s[-1,0]k[2]
- // Finally, we can add multiple rows together to get the desired output.
- // Register for source s[-1:3, :]
- __m128i src_reg_m1, src_reg_0, src_reg_1, src_reg_2, src_reg_3;
- // Interleaved rows of the source. lo is first half, hi second
- __m128i src_reg_m10, src_reg_01;
- __m128i src_reg_12, src_reg_23;
- __m128i kernel_reg; // Kernel
- __m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used
- // Result after multiply and add
- __m128i res_reg_m10, res_reg_01, res_reg_12, res_reg_23;
- __m128i res_reg_m1012, res_reg_0123;
- const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
- // We will compute the result two rows at a time
- const ptrdiff_t src_stride_unrolled = src_stride << 1;
- const ptrdiff_t dst_stride_unrolled = dst_stride << 1;
- int h;
- // Load Kernel
- kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
- kernel_reg = _mm_srai_epi16(kernel_reg, 1);
- kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
- kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u));
- kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u));
- // First shuffle the data
- src_reg_m1 = _mm_loadl_epi64((const __m128i *)src_ptr);
- src_reg_0 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride));
- src_reg_m10 = _mm_unpacklo_epi8(src_reg_m1, src_reg_0);
- // More shuffling
- src_reg_1 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 2));
- src_reg_01 = _mm_unpacklo_epi8(src_reg_0, src_reg_1);
- for (h = height; h > 1; h -= 2) {
- src_reg_2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 3));
- src_reg_12 = _mm_unpacklo_epi8(src_reg_1, src_reg_2);
- src_reg_3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 4));
- src_reg_23 = _mm_unpacklo_epi8(src_reg_2, src_reg_3);
- // Partial output
- res_reg_m10 = _mm_maddubs_epi16(src_reg_m10, kernel_reg_23);
- res_reg_01 = _mm_maddubs_epi16(src_reg_01, kernel_reg_23);
- res_reg_12 = _mm_maddubs_epi16(src_reg_12, kernel_reg_45);
- res_reg_23 = _mm_maddubs_epi16(src_reg_23, kernel_reg_45);
- // Add to get entire output
- res_reg_m1012 = _mm_adds_epi16(res_reg_m10, res_reg_12);
- res_reg_0123 = _mm_adds_epi16(res_reg_01, res_reg_23);
- // Round the words
- res_reg_m1012 = mm_round_epi16_sse2(&res_reg_m1012, ®_32, 6);
- res_reg_0123 = mm_round_epi16_sse2(&res_reg_0123, ®_32, 6);
- // Pack from 16-bit to 8-bit
- res_reg_m1012 = _mm_packus_epi16(res_reg_m1012, _mm_setzero_si128());
- res_reg_0123 = _mm_packus_epi16(res_reg_0123, _mm_setzero_si128());
- _mm_storel_epi64((__m128i *)dst_ptr, res_reg_m1012);
- _mm_storel_epi64((__m128i *)(dst_ptr + dst_stride), res_reg_0123);
- // Update the source by two rows
- src_ptr += src_stride_unrolled;
- dst_ptr += dst_stride_unrolled;
- src_reg_m10 = src_reg_12;
- src_reg_01 = src_reg_23;
- src_reg_1 = src_reg_3;
- }
- }
- static void vpx_filter_block1d4_h4_ssse3(const uint8_t *src_ptr,
- ptrdiff_t src_stride, uint8_t *dst_ptr,
- ptrdiff_t dst_stride, uint32_t height,
- const int16_t *kernel) {
- // We will cast the kernel from 16-bit words to 8-bit words, and then extract
- // the middle four elements of the kernel into a single register in the form
- // k[5:2] k[5:2] k[5:2] k[5:2]
- // Then we shuffle the source into
- // s[5:2] s[4:1] s[3:0] s[2:-1]
- // Calling multiply and add gives us half of the sum next to each other.
- // Calling horizontal add then gives us the output.
- __m128i kernel_reg; // Kernel
- const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
- int h;
- __m128i src_reg, src_reg_shuf;
- __m128i dst_first;
- __m128i shuf_idx =
- _mm_setr_epi8(0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6);
- // Start one pixel before as we need tap/2 - 1 = 1 sample from the past
- src_ptr -= 1;
- // Load Kernel
- kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
- kernel_reg = _mm_srai_epi16(kernel_reg, 1);
- kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
- kernel_reg = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi32(0x05040302u));
- for (h = height; h > 0; --h) {
- // Load the source
- src_reg = _mm_loadu_si128((const __m128i *)src_ptr);
- src_reg_shuf = _mm_shuffle_epi8(src_reg, shuf_idx);
- // Get the result
- dst_first = _mm_maddubs_epi16(src_reg_shuf, kernel_reg);
- dst_first = _mm_hadds_epi16(dst_first, _mm_setzero_si128());
- // Round result
- dst_first = mm_round_epi16_sse2(&dst_first, ®_32, 6);
- // Pack to 8-bits
- dst_first = _mm_packus_epi16(dst_first, _mm_setzero_si128());
- *((uint32_t *)(dst_ptr)) = _mm_cvtsi128_si32(dst_first);
- src_ptr += src_stride;
- dst_ptr += dst_stride;
- }
- }
- static void vpx_filter_block1d4_v4_ssse3(const uint8_t *src_ptr,
- ptrdiff_t src_stride, uint8_t *dst_ptr,
- ptrdiff_t dst_stride, uint32_t height,
- const int16_t *kernel) {
- // We will load two rows of pixels as 8-bit words, rearrange them into the
- // form
- // ... s[2,0] s[1,0] s[0,0] s[-1,0]
- // so that we can call multiply and add with the kernel partial output. Then
- // we can call horizontal add to get the output.
- // Finally, we can add multiple rows together to get the desired output.
- // This is done two rows at a time
- // Register for source s[-1:3, :]
- __m128i src_reg_m1, src_reg_0, src_reg_1, src_reg_2, src_reg_3;
- // Interleaved rows of the source.
- __m128i src_reg_m10, src_reg_01;
- __m128i src_reg_12, src_reg_23;
- __m128i src_reg_m1001, src_reg_1223;
- __m128i src_reg_m1012_1023_lo, src_reg_m1012_1023_hi;
- __m128i kernel_reg; // Kernel
- // Result after multiply and add
- __m128i reg_0, reg_1;
- const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
- // We will compute the result two rows at a time
- const ptrdiff_t src_stride_unrolled = src_stride << 1;
- const ptrdiff_t dst_stride_unrolled = dst_stride << 1;
- int h;
- // Load Kernel
- kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
- kernel_reg = _mm_srai_epi16(kernel_reg, 1);
- kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
- kernel_reg = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi32(0x05040302u));
- // First shuffle the data
- src_reg_m1 = _mm_loadl_epi64((const __m128i *)src_ptr);
- src_reg_0 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride));
- src_reg_m10 = _mm_unpacklo_epi32(src_reg_m1, src_reg_0);
- // More shuffling
- src_reg_1 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 2));
- src_reg_01 = _mm_unpacklo_epi32(src_reg_0, src_reg_1);
- // Put three rows next to each other
- src_reg_m1001 = _mm_unpacklo_epi8(src_reg_m10, src_reg_01);
- for (h = height; h > 1; h -= 2) {
- src_reg_2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 3));
- src_reg_12 = _mm_unpacklo_epi32(src_reg_1, src_reg_2);
- src_reg_3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 4));
- src_reg_23 = _mm_unpacklo_epi32(src_reg_2, src_reg_3);
- // Put three rows next to each other
- src_reg_1223 = _mm_unpacklo_epi8(src_reg_12, src_reg_23);
- // Put all four rows next to each other
- src_reg_m1012_1023_lo = _mm_unpacklo_epi16(src_reg_m1001, src_reg_1223);
- src_reg_m1012_1023_hi = _mm_unpackhi_epi16(src_reg_m1001, src_reg_1223);
- // Get the results
- reg_0 = _mm_maddubs_epi16(src_reg_m1012_1023_lo, kernel_reg);
- reg_1 = _mm_maddubs_epi16(src_reg_m1012_1023_hi, kernel_reg);
- reg_0 = _mm_hadds_epi16(reg_0, _mm_setzero_si128());
- reg_1 = _mm_hadds_epi16(reg_1, _mm_setzero_si128());
- // Round the words
- reg_0 = mm_round_epi16_sse2(®_0, ®_32, 6);
- reg_1 = mm_round_epi16_sse2(®_1, ®_32, 6);
- // Pack from 16-bit to 8-bit and put them in the right order
- reg_0 = _mm_packus_epi16(reg_0, reg_0);
- reg_1 = _mm_packus_epi16(reg_1, reg_1);
- // Save the result
- *((uint32_t *)(dst_ptr)) = _mm_cvtsi128_si32(reg_0);
- *((uint32_t *)(dst_ptr + dst_stride)) = _mm_cvtsi128_si32(reg_1);
- // Update the source by two rows
- src_ptr += src_stride_unrolled;
- dst_ptr += dst_stride_unrolled;
- src_reg_m1001 = src_reg_1223;
- src_reg_1 = src_reg_3;
- }
- }
- // From vpx_dsp/x86/vpx_subpixel_8t_ssse3.asm
- filter8_1dfunction vpx_filter_block1d16_v8_ssse3;
- filter8_1dfunction vpx_filter_block1d16_h8_ssse3;
- filter8_1dfunction vpx_filter_block1d4_v8_ssse3;
- filter8_1dfunction vpx_filter_block1d16_v8_avg_ssse3;
- filter8_1dfunction vpx_filter_block1d16_h8_avg_ssse3;
- filter8_1dfunction vpx_filter_block1d8_v8_avg_ssse3;
- filter8_1dfunction vpx_filter_block1d8_h8_avg_ssse3;
- filter8_1dfunction vpx_filter_block1d4_v8_avg_ssse3;
- filter8_1dfunction vpx_filter_block1d4_h8_avg_ssse3;
- // Use the [vh]8 version because there is no [vh]4 implementation.
- #define vpx_filter_block1d16_v4_avg_ssse3 vpx_filter_block1d16_v8_avg_ssse3
- #define vpx_filter_block1d16_h4_avg_ssse3 vpx_filter_block1d16_h8_avg_ssse3
- #define vpx_filter_block1d8_v4_avg_ssse3 vpx_filter_block1d8_v8_avg_ssse3
- #define vpx_filter_block1d8_h4_avg_ssse3 vpx_filter_block1d8_h8_avg_ssse3
- #define vpx_filter_block1d4_v4_avg_ssse3 vpx_filter_block1d4_v8_avg_ssse3
- #define vpx_filter_block1d4_h4_avg_ssse3 vpx_filter_block1d4_h8_avg_ssse3
- // From vpx_dsp/x86/vpx_subpixel_bilinear_ssse3.asm
- filter8_1dfunction vpx_filter_block1d16_v2_ssse3;
- filter8_1dfunction vpx_filter_block1d16_h2_ssse3;
- filter8_1dfunction vpx_filter_block1d8_v2_ssse3;
- filter8_1dfunction vpx_filter_block1d8_h2_ssse3;
- filter8_1dfunction vpx_filter_block1d4_v2_ssse3;
- filter8_1dfunction vpx_filter_block1d4_h2_ssse3;
- filter8_1dfunction vpx_filter_block1d16_v2_avg_ssse3;
- filter8_1dfunction vpx_filter_block1d16_h2_avg_ssse3;
- filter8_1dfunction vpx_filter_block1d8_v2_avg_ssse3;
- filter8_1dfunction vpx_filter_block1d8_h2_avg_ssse3;
- filter8_1dfunction vpx_filter_block1d4_v2_avg_ssse3;
- filter8_1dfunction vpx_filter_block1d4_h2_avg_ssse3;
- // void vpx_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
- // uint8_t *dst, ptrdiff_t dst_stride,
- // const InterpKernel *filter, int x0_q4,
- // int32_t x_step_q4, int y0_q4, int y_step_q4,
- // int w, int h);
- // void vpx_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
- // uint8_t *dst, ptrdiff_t dst_stride,
- // const InterpKernel *filter, int x0_q4,
- // int32_t x_step_q4, int y0_q4, int y_step_q4,
- // int w, int h);
- // void vpx_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
- // uint8_t *dst, ptrdiff_t dst_stride,
- // const InterpKernel *filter, int x0_q4,
- // int32_t x_step_q4, int y0_q4,
- // int y_step_q4, int w, int h);
- // void vpx_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
- // uint8_t *dst, ptrdiff_t dst_stride,
- // const InterpKernel *filter, int x0_q4,
- // int32_t x_step_q4, int y0_q4,
- // int y_step_q4, int w, int h);
- FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , ssse3, 0);
- FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * (num_taps / 2 - 1), ,
- ssse3, 0);
- FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, ssse3, 1);
- FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v,
- src - src_stride * (num_taps / 2 - 1), avg_, ssse3, 1);
- static void filter_horiz_w8_ssse3(const uint8_t *const src,
- const ptrdiff_t src_stride,
- uint8_t *const dst,
- const int16_t *const x_filter) {
- __m128i s[8], ss[4], temp;
- load_8bit_8x8(src, src_stride, s);
- // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71
- // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73
- // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75
- // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77
- transpose_16bit_4x8(s, ss);
- temp = shuffle_filter_convolve8_8_ssse3(ss, x_filter);
- // shrink to 8 bit each 16 bits
- temp = _mm_packus_epi16(temp, temp);
- // save only 8 bytes convolve result
- _mm_storel_epi64((__m128i *)dst, temp);
- }
- static void transpose8x8_to_dst(const uint8_t *const src,
- const ptrdiff_t src_stride, uint8_t *const dst,
- const ptrdiff_t dst_stride) {
- __m128i s[8];
- load_8bit_8x8(src, src_stride, s);
- transpose_8bit_8x8(s, s);
- store_8bit_8x8(s, dst, dst_stride);
- }
- static void scaledconvolve_horiz_w8(const uint8_t *src,
- const ptrdiff_t src_stride, uint8_t *dst,
- const ptrdiff_t dst_stride,
- const InterpKernel *const x_filters,
- const int x0_q4, const int x_step_q4,
- const int w, const int h) {
- DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
- int x, y, z;
- src -= SUBPEL_TAPS / 2 - 1;
- // This function processes 8x8 areas. The intermediate height is not always
- // a multiple of 8, so force it to be a multiple of 8 here.
- y = h + (8 - (h & 0x7));
- do {
- int x_q4 = x0_q4;
- for (x = 0; x < w; x += 8) {
- // process 8 src_x steps
- for (z = 0; z < 8; ++z) {
- const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
- const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
- if (x_q4 & SUBPEL_MASK) {
- filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter);
- } else {
- int i;
- for (i = 0; i < 8; ++i) {
- temp[z * 8 + i] = src_x[i * src_stride + 3];
- }
- }
- x_q4 += x_step_q4;
- }
- // transpose the 8x8 filters values back to dst
- transpose8x8_to_dst(temp, 8, dst + x, dst_stride);
- }
- src += src_stride * 8;
- dst += dst_stride * 8;
- } while (y -= 8);
- }
- static void filter_horiz_w4_ssse3(const uint8_t *const src,
- const ptrdiff_t src_stride,
- uint8_t *const dst,
- const int16_t *const filter) {
- __m128i s[4], ss[2];
- __m128i temp;
- load_8bit_8x4(src, src_stride, s);
- transpose_16bit_4x4(s, ss);
- // 00 01 10 11 20 21 30 31
- s[0] = ss[0];
- // 02 03 12 13 22 23 32 33
- s[1] = _mm_srli_si128(ss[0], 8);
- // 04 05 14 15 24 25 34 35
- s[2] = ss[1];
- // 06 07 16 17 26 27 36 37
- s[3] = _mm_srli_si128(ss[1], 8);
- temp = shuffle_filter_convolve8_8_ssse3(s, filter);
- // shrink to 8 bit each 16 bits
- temp = _mm_packus_epi16(temp, temp);
- // save only 4 bytes
- *(int *)dst = _mm_cvtsi128_si32(temp);
- }
- static void transpose4x4_to_dst(const uint8_t *const src,
- const ptrdiff_t src_stride, uint8_t *const dst,
- const ptrdiff_t dst_stride) {
- __m128i s[4];
- load_8bit_4x4(src, src_stride, s);
- s[0] = transpose_8bit_4x4(s);
- s[1] = _mm_srli_si128(s[0], 4);
- s[2] = _mm_srli_si128(s[0], 8);
- s[3] = _mm_srli_si128(s[0], 12);
- store_8bit_4x4(s, dst, dst_stride);
- }
- static void scaledconvolve_horiz_w4(const uint8_t *src,
- const ptrdiff_t src_stride, uint8_t *dst,
- const ptrdiff_t dst_stride,
- const InterpKernel *const x_filters,
- const int x0_q4, const int x_step_q4,
- const int w, const int h) {
- DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]);
- int x, y, z;
- src -= SUBPEL_TAPS / 2 - 1;
- for (y = 0; y < h; y += 4) {
- int x_q4 = x0_q4;
- for (x = 0; x < w; x += 4) {
- // process 4 src_x steps
- for (z = 0; z < 4; ++z) {
- const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
- const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
- if (x_q4 & SUBPEL_MASK) {
- filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter);
- } else {
- int i;
- for (i = 0; i < 4; ++i) {
- temp[z * 4 + i] = src_x[i * src_stride + 3];
- }
- }
- x_q4 += x_step_q4;
- }
- // transpose the 4x4 filters values back to dst
- transpose4x4_to_dst(temp, 4, dst + x, dst_stride);
- }
- src += src_stride * 4;
- dst += dst_stride * 4;
- }
- }
- static __m128i filter_vert_kernel(const __m128i *const s,
- const int16_t *const filter) {
- __m128i ss[4];
- __m128i temp;
- // 00 10 01 11 02 12 03 13
- ss[0] = _mm_unpacklo_epi8(s[0], s[1]);
- // 20 30 21 31 22 32 23 33
- ss[1] = _mm_unpacklo_epi8(s[2], s[3]);
- // 40 50 41 51 42 52 43 53
- ss[2] = _mm_unpacklo_epi8(s[4], s[5]);
- // 60 70 61 71 62 72 63 73
- ss[3] = _mm_unpacklo_epi8(s[6], s[7]);
- temp = shuffle_filter_convolve8_8_ssse3(ss, filter);
- // shrink to 8 bit each 16 bits
- return _mm_packus_epi16(temp, temp);
- }
- static void filter_vert_w4_ssse3(const uint8_t *const src,
- const ptrdiff_t src_stride, uint8_t *const dst,
- const int16_t *const filter) {
- __m128i s[8];
- __m128i temp;
- load_8bit_4x8(src, src_stride, s);
- temp = filter_vert_kernel(s, filter);
- // save only 4 bytes
- *(int *)dst = _mm_cvtsi128_si32(temp);
- }
- static void scaledconvolve_vert_w4(
- const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
- const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
- const int y0_q4, const int y_step_q4, const int w, const int h) {
- int y;
- int y_q4 = y0_q4;
- src -= src_stride * (SUBPEL_TAPS / 2 - 1);
- for (y = 0; y < h; ++y) {
- const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
- const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
- if (y_q4 & SUBPEL_MASK) {
- filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
- } else {
- memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
- }
- y_q4 += y_step_q4;
- }
- }
- static void filter_vert_w8_ssse3(const uint8_t *const src,
- const ptrdiff_t src_stride, uint8_t *const dst,
- const int16_t *const filter) {
- __m128i s[8], temp;
- load_8bit_8x8(src, src_stride, s);
- temp = filter_vert_kernel(s, filter);
- // save only 8 bytes convolve result
- _mm_storel_epi64((__m128i *)dst, temp);
- }
- static void scaledconvolve_vert_w8(
- const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
- const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
- const int y0_q4, const int y_step_q4, const int w, const int h) {
- int y;
- int y_q4 = y0_q4;
- src -= src_stride * (SUBPEL_TAPS / 2 - 1);
- for (y = 0; y < h; ++y) {
- const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
- const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
- if (y_q4 & SUBPEL_MASK) {
- filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
- } else {
- memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
- }
- y_q4 += y_step_q4;
- }
- }
- static void filter_vert_w16_ssse3(const uint8_t *src,
- const ptrdiff_t src_stride,
- uint8_t *const dst,
- const int16_t *const filter, const int w) {
- int i;
- __m128i f[4];
- shuffle_filter_ssse3(filter, f);
- for (i = 0; i < w; i += 16) {
- __m128i s[8], s_lo[4], s_hi[4], temp_lo, temp_hi;
- loadu_8bit_16x8(src, src_stride, s);
- // merge the result together
- s_lo[0] = _mm_unpacklo_epi8(s[0], s[1]);
- s_hi[0] = _mm_unpackhi_epi8(s[0], s[1]);
- s_lo[1] = _mm_unpacklo_epi8(s[2], s[3]);
- s_hi[1] = _mm_unpackhi_epi8(s[2], s[3]);
- s_lo[2] = _mm_unpacklo_epi8(s[4], s[5]);
- s_hi[2] = _mm_unpackhi_epi8(s[4], s[5]);
- s_lo[3] = _mm_unpacklo_epi8(s[6], s[7]);
- s_hi[3] = _mm_unpackhi_epi8(s[6], s[7]);
- temp_lo = convolve8_8_ssse3(s_lo, f);
- temp_hi = convolve8_8_ssse3(s_hi, f);
- // shrink to 8 bit each 16 bits, the first lane contain the first convolve
- // result and the second lane contain the second convolve result
- temp_hi = _mm_packus_epi16(temp_lo, temp_hi);
- src += 16;
- // save 16 bytes convolve result
- _mm_store_si128((__m128i *)&dst[i], temp_hi);
- }
- }
- static void scaledconvolve_vert_w16(
- const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
- const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
- const int y0_q4, const int y_step_q4, const int w, const int h) {
- int y;
- int y_q4 = y0_q4;
- src -= src_stride * (SUBPEL_TAPS / 2 - 1);
- for (y = 0; y < h; ++y) {
- const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
- const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
- if (y_q4 & SUBPEL_MASK) {
- filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter,
- w);
- } else {
- memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
- }
- y_q4 += y_step_q4;
- }
- }
- void vpx_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
- ptrdiff_t dst_stride, const InterpKernel *filter,
- int x0_q4, int x_step_q4, int y0_q4, int y_step_q4,
- int w, int h) {
- // Note: Fixed size intermediate buffer, temp, places limits on parameters.
- // 2d filtering proceeds in 2 steps:
- // (1) Interpolate horizontally into an intermediate buffer, temp.
- // (2) Interpolate temp vertically to derive the sub-pixel result.
- // Deriving the maximum number of rows in the temp buffer (135):
- // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
- // --Largest block size is 64x64 pixels.
- // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
- // original frame (in 1/16th pixel units).
- // --Must round-up because block may be located at sub-pixel position.
- // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
- // --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
- // --Require an additional 8 rows for the horiz_w8 transpose tail.
- // When calling in frame scaling function, the smallest scaling factor is x1/4
- // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still
- // big enough.
- DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]);
- const int intermediate_height =
- (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
- assert(w <= 64);
- assert(h <= 64);
- assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32));
- assert(x_step_q4 <= 64);
- if (w >= 8) {
- scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1),
- src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
- intermediate_height);
- } else {
- scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1),
- src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
- intermediate_height);
- }
- if (w >= 16) {
- scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
- dst_stride, filter, y0_q4, y_step_q4, w, h);
- } else if (w == 8) {
- scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
- dst_stride, filter, y0_q4, y_step_q4, w, h);
- } else {
- scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
- dst_stride, filter, y0_q4, y_step_q4, w, h);
- }
- }
- // void vpx_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride,
- // uint8_t *dst, ptrdiff_t dst_stride,
- // const InterpKernel *filter, int x0_q4,
- // int32_t x_step_q4, int y0_q4, int y_step_q4,
- // int w, int h);
- // void vpx_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride,
- // uint8_t *dst, ptrdiff_t dst_stride,
- // const InterpKernel *filter, int x0_q4,
- // int32_t x_step_q4, int y0_q4, int y_step_q4,
- // int w, int h);
- FUN_CONV_2D(, ssse3, 0);
- FUN_CONV_2D(avg_, ssse3, 1);
|