vp9_rd.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775
  1. /*
  2. * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
  3. *
  4. * Use of this source code is governed by a BSD-style license
  5. * that can be found in the LICENSE file in the root of the source
  6. * tree. An additional intellectual property rights grant can be found
  7. * in the file PATENTS. All contributing project authors may
  8. * be found in the AUTHORS file in the root of the source tree.
  9. */
  10. #include <assert.h>
  11. #include <math.h>
  12. #include <stdio.h>
  13. #include "./vp9_rtcd.h"
  14. #include "vpx_dsp/vpx_dsp_common.h"
  15. #include "vpx_mem/vpx_mem.h"
  16. #include "vpx_ports/bitops.h"
  17. #include "vpx_ports/mem.h"
  18. #include "vpx_ports/system_state.h"
  19. #include "vp9/common/vp9_common.h"
  20. #include "vp9/common/vp9_entropy.h"
  21. #include "vp9/common/vp9_entropymode.h"
  22. #include "vp9/common/vp9_mvref_common.h"
  23. #include "vp9/common/vp9_pred_common.h"
  24. #include "vp9/common/vp9_quant_common.h"
  25. #include "vp9/common/vp9_reconinter.h"
  26. #include "vp9/common/vp9_reconintra.h"
  27. #include "vp9/common/vp9_seg_common.h"
  28. #include "vp9/encoder/vp9_cost.h"
  29. #include "vp9/encoder/vp9_encodemb.h"
  30. #include "vp9/encoder/vp9_encodemv.h"
  31. #include "vp9/encoder/vp9_encoder.h"
  32. #include "vp9/encoder/vp9_mcomp.h"
  33. #include "vp9/encoder/vp9_quantize.h"
  34. #include "vp9/encoder/vp9_ratectrl.h"
  35. #include "vp9/encoder/vp9_rd.h"
  36. #include "vp9/encoder/vp9_tokenize.h"
  37. #define RD_THRESH_POW 1.25
  38. // Factor to weigh the rate for switchable interp filters.
  39. #define SWITCHABLE_INTERP_RATE_FACTOR 1
  40. void vp9_rd_cost_reset(RD_COST *rd_cost) {
  41. rd_cost->rate = INT_MAX;
  42. rd_cost->dist = INT64_MAX;
  43. rd_cost->rdcost = INT64_MAX;
  44. }
  45. void vp9_rd_cost_init(RD_COST *rd_cost) {
  46. rd_cost->rate = 0;
  47. rd_cost->dist = 0;
  48. rd_cost->rdcost = 0;
  49. }
  50. int64_t vp9_calculate_rd_cost(int mult, int div, int rate, int64_t dist) {
  51. assert(mult >= 0);
  52. assert(div > 0);
  53. if (rate >= 0 && dist >= 0) {
  54. return RDCOST(mult, div, rate, dist);
  55. }
  56. if (rate >= 0 && dist < 0) {
  57. return RDCOST_NEG_D(mult, div, rate, -dist);
  58. }
  59. if (rate < 0 && dist >= 0) {
  60. return RDCOST_NEG_R(mult, div, -rate, dist);
  61. }
  62. return -RDCOST(mult, div, -rate, -dist);
  63. }
  64. void vp9_rd_cost_update(int mult, int div, RD_COST *rd_cost) {
  65. if (rd_cost->rate < INT_MAX && rd_cost->dist < INT64_MAX) {
  66. rd_cost->rdcost =
  67. vp9_calculate_rd_cost(mult, div, rd_cost->rate, rd_cost->dist);
  68. } else {
  69. vp9_rd_cost_reset(rd_cost);
  70. }
  71. }
  72. // The baseline rd thresholds for breaking out of the rd loop for
  73. // certain modes are assumed to be based on 8x8 blocks.
  74. // This table is used to correct for block size.
  75. // The factors here are << 2 (2 = x0.5, 32 = x8 etc).
  76. static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES] = {
  77. 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32
  78. };
  79. static void fill_mode_costs(VP9_COMP *cpi) {
  80. const FRAME_CONTEXT *const fc = cpi->common.fc;
  81. int i, j;
  82. for (i = 0; i < INTRA_MODES; ++i) {
  83. for (j = 0; j < INTRA_MODES; ++j) {
  84. vp9_cost_tokens(cpi->y_mode_costs[i][j], vp9_kf_y_mode_prob[i][j],
  85. vp9_intra_mode_tree);
  86. }
  87. }
  88. vp9_cost_tokens(cpi->mbmode_cost, fc->y_mode_prob[1], vp9_intra_mode_tree);
  89. for (i = 0; i < INTRA_MODES; ++i) {
  90. vp9_cost_tokens(cpi->intra_uv_mode_cost[KEY_FRAME][i],
  91. vp9_kf_uv_mode_prob[i], vp9_intra_mode_tree);
  92. vp9_cost_tokens(cpi->intra_uv_mode_cost[INTER_FRAME][i],
  93. fc->uv_mode_prob[i], vp9_intra_mode_tree);
  94. }
  95. for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) {
  96. vp9_cost_tokens(cpi->switchable_interp_costs[i],
  97. fc->switchable_interp_prob[i], vp9_switchable_interp_tree);
  98. }
  99. for (i = TX_8X8; i < TX_SIZES; ++i) {
  100. for (j = 0; j < TX_SIZE_CONTEXTS; ++j) {
  101. const vpx_prob *tx_probs = get_tx_probs(i, j, &fc->tx_probs);
  102. int k;
  103. for (k = 0; k <= i; ++k) {
  104. int cost = 0;
  105. int m;
  106. for (m = 0; m <= k - (k == i); ++m) {
  107. if (m == k)
  108. cost += vp9_cost_zero(tx_probs[m]);
  109. else
  110. cost += vp9_cost_one(tx_probs[m]);
  111. }
  112. cpi->tx_size_cost[i - 1][j][k] = cost;
  113. }
  114. }
  115. }
  116. }
  117. static void fill_token_costs(vp9_coeff_cost *c,
  118. vp9_coeff_probs_model (*p)[PLANE_TYPES]) {
  119. int i, j, k, l;
  120. TX_SIZE t;
  121. for (t = TX_4X4; t <= TX_32X32; ++t)
  122. for (i = 0; i < PLANE_TYPES; ++i)
  123. for (j = 0; j < REF_TYPES; ++j)
  124. for (k = 0; k < COEF_BANDS; ++k)
  125. for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
  126. vpx_prob probs[ENTROPY_NODES];
  127. vp9_model_to_full_probs(p[t][i][j][k][l], probs);
  128. vp9_cost_tokens((int *)c[t][i][j][k][0][l], probs, vp9_coef_tree);
  129. vp9_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs,
  130. vp9_coef_tree);
  131. assert(c[t][i][j][k][0][l][EOB_TOKEN] ==
  132. c[t][i][j][k][1][l][EOB_TOKEN]);
  133. }
  134. }
  135. // Values are now correlated to quantizer.
  136. static int sad_per_bit16lut_8[QINDEX_RANGE];
  137. static int sad_per_bit4lut_8[QINDEX_RANGE];
  138. #if CONFIG_VP9_HIGHBITDEPTH
  139. static int sad_per_bit16lut_10[QINDEX_RANGE];
  140. static int sad_per_bit4lut_10[QINDEX_RANGE];
  141. static int sad_per_bit16lut_12[QINDEX_RANGE];
  142. static int sad_per_bit4lut_12[QINDEX_RANGE];
  143. #endif
  144. static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range,
  145. vpx_bit_depth_t bit_depth) {
  146. int i;
  147. // Initialize the sad lut tables using a formulaic calculation for now.
  148. // This is to make it easier to resolve the impact of experimental changes
  149. // to the quantizer tables.
  150. for (i = 0; i < range; i++) {
  151. const double q = vp9_convert_qindex_to_q(i, bit_depth);
  152. bit16lut[i] = (int)(0.0418 * q + 2.4107);
  153. bit4lut[i] = (int)(0.063 * q + 2.742);
  154. }
  155. }
  156. void vp9_init_me_luts(void) {
  157. init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE,
  158. VPX_BITS_8);
  159. #if CONFIG_VP9_HIGHBITDEPTH
  160. init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE,
  161. VPX_BITS_10);
  162. init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE,
  163. VPX_BITS_12);
  164. #endif
  165. }
  166. static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12,
  167. 8, 8, 4, 4, 2, 2, 1, 0 };
  168. // Note that the element below for frame type "USE_BUF_FRAME", which indicates
  169. // that the show frame flag is set, should not be used as no real frame
  170. // is encoded so we should not reach here. However, a dummy value
  171. // is inserted here to make sure the data structure has the right number
  172. // of values assigned.
  173. static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = { 128, 144, 128,
  174. 128, 144, 144 };
  175. int vp9_compute_rd_mult_based_on_qindex(const VP9_COMP *cpi, int qindex) {
  176. // largest dc_quant is 21387, therefore rdmult should always fit in int32_t
  177. const int q = vp9_dc_quant(qindex, 0, cpi->common.bit_depth);
  178. uint32_t rdmult = q * q;
  179. if (cpi->common.frame_type != KEY_FRAME) {
  180. if (qindex < 128)
  181. rdmult = rdmult * 4;
  182. else if (qindex < 190)
  183. rdmult = rdmult * 4 + rdmult / 2;
  184. else
  185. rdmult = rdmult * 3;
  186. } else {
  187. if (qindex < 64)
  188. rdmult = rdmult * 4;
  189. else if (qindex <= 128)
  190. rdmult = rdmult * 3 + rdmult / 2;
  191. else if (qindex < 190)
  192. rdmult = rdmult * 4 + rdmult / 2;
  193. else
  194. rdmult = rdmult * 7 + rdmult / 2;
  195. }
  196. #if CONFIG_VP9_HIGHBITDEPTH
  197. switch (cpi->common.bit_depth) {
  198. case VPX_BITS_10: rdmult = ROUND_POWER_OF_TWO(rdmult, 4); break;
  199. case VPX_BITS_12: rdmult = ROUND_POWER_OF_TWO(rdmult, 8); break;
  200. default: break;
  201. }
  202. #endif // CONFIG_VP9_HIGHBITDEPTH
  203. return rdmult > 0 ? rdmult : 1;
  204. }
  205. static int modulate_rdmult(const VP9_COMP *cpi, int rdmult) {
  206. int64_t rdmult_64 = rdmult;
  207. if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
  208. const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
  209. const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index];
  210. const int gfu_boost = cpi->multi_layer_arf
  211. ? gf_group->gfu_boost[gf_group->index]
  212. : cpi->rc.gfu_boost;
  213. const int boost_index = VPXMIN(15, (gfu_boost / 100));
  214. rdmult_64 = (rdmult_64 * rd_frame_type_factor[frame_type]) >> 7;
  215. rdmult_64 += ((rdmult_64 * rd_boost_factor[boost_index]) >> 7);
  216. }
  217. return (int)rdmult_64;
  218. }
  219. int vp9_compute_rd_mult(const VP9_COMP *cpi, int qindex) {
  220. int rdmult = vp9_compute_rd_mult_based_on_qindex(cpi, qindex);
  221. return modulate_rdmult(cpi, rdmult);
  222. }
  223. int vp9_get_adaptive_rdmult(const VP9_COMP *cpi, double beta) {
  224. int rdmult =
  225. vp9_compute_rd_mult_based_on_qindex(cpi, cpi->common.base_qindex);
  226. rdmult = (int)((double)rdmult / beta);
  227. rdmult = rdmult > 0 ? rdmult : 1;
  228. return modulate_rdmult(cpi, rdmult);
  229. }
  230. static int compute_rd_thresh_factor(int qindex, vpx_bit_depth_t bit_depth) {
  231. double q;
  232. #if CONFIG_VP9_HIGHBITDEPTH
  233. switch (bit_depth) {
  234. case VPX_BITS_8: q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0; break;
  235. case VPX_BITS_10: q = vp9_dc_quant(qindex, 0, VPX_BITS_10) / 16.0; break;
  236. default:
  237. assert(bit_depth == VPX_BITS_12);
  238. q = vp9_dc_quant(qindex, 0, VPX_BITS_12) / 64.0;
  239. break;
  240. }
  241. #else
  242. (void)bit_depth;
  243. q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0;
  244. #endif // CONFIG_VP9_HIGHBITDEPTH
  245. // TODO(debargha): Adjust the function below.
  246. return VPXMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
  247. }
  248. void vp9_initialize_me_consts(VP9_COMP *cpi, MACROBLOCK *x, int qindex) {
  249. #if CONFIG_VP9_HIGHBITDEPTH
  250. switch (cpi->common.bit_depth) {
  251. case VPX_BITS_8:
  252. x->sadperbit16 = sad_per_bit16lut_8[qindex];
  253. x->sadperbit4 = sad_per_bit4lut_8[qindex];
  254. break;
  255. case VPX_BITS_10:
  256. x->sadperbit16 = sad_per_bit16lut_10[qindex];
  257. x->sadperbit4 = sad_per_bit4lut_10[qindex];
  258. break;
  259. default:
  260. assert(cpi->common.bit_depth == VPX_BITS_12);
  261. x->sadperbit16 = sad_per_bit16lut_12[qindex];
  262. x->sadperbit4 = sad_per_bit4lut_12[qindex];
  263. break;
  264. }
  265. #else
  266. (void)cpi;
  267. x->sadperbit16 = sad_per_bit16lut_8[qindex];
  268. x->sadperbit4 = sad_per_bit4lut_8[qindex];
  269. #endif // CONFIG_VP9_HIGHBITDEPTH
  270. }
  271. static void set_block_thresholds(const VP9_COMMON *cm, RD_OPT *rd) {
  272. int i, bsize, segment_id;
  273. for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) {
  274. const int qindex =
  275. clamp(vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex) +
  276. cm->y_dc_delta_q,
  277. 0, MAXQ);
  278. const int q = compute_rd_thresh_factor(qindex, cm->bit_depth);
  279. for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) {
  280. // Threshold here seems unnecessarily harsh but fine given actual
  281. // range of values used for cpi->sf.thresh_mult[].
  282. const int t = q * rd_thresh_block_size_factor[bsize];
  283. const int thresh_max = INT_MAX / t;
  284. if (bsize >= BLOCK_8X8) {
  285. for (i = 0; i < MAX_MODES; ++i)
  286. rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max
  287. ? rd->thresh_mult[i] * t / 4
  288. : INT_MAX;
  289. } else {
  290. for (i = 0; i < MAX_REFS; ++i)
  291. rd->threshes[segment_id][bsize][i] =
  292. rd->thresh_mult_sub8x8[i] < thresh_max
  293. ? rd->thresh_mult_sub8x8[i] * t / 4
  294. : INT_MAX;
  295. }
  296. }
  297. }
  298. }
  299. void vp9_build_inter_mode_cost(VP9_COMP *cpi) {
  300. const VP9_COMMON *const cm = &cpi->common;
  301. int i;
  302. for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
  303. vp9_cost_tokens((int *)cpi->inter_mode_cost[i], cm->fc->inter_mode_probs[i],
  304. vp9_inter_mode_tree);
  305. }
  306. }
  307. void vp9_initialize_rd_consts(VP9_COMP *cpi) {
  308. VP9_COMMON *const cm = &cpi->common;
  309. MACROBLOCK *const x = &cpi->td.mb;
  310. MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
  311. RD_OPT *const rd = &cpi->rd;
  312. int i;
  313. vpx_clear_system_state();
  314. rd->RDDIV = RDDIV_BITS; // In bits (to multiply D by 128).
  315. rd->RDMULT = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q);
  316. set_error_per_bit(x, rd->RDMULT);
  317. x->select_tx_size = (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
  318. cm->frame_type != KEY_FRAME)
  319. ? 0
  320. : 1;
  321. set_block_thresholds(cm, rd);
  322. set_partition_probs(cm, xd);
  323. if (cpi->oxcf.pass == 1) {
  324. if (!frame_is_intra_only(cm))
  325. vp9_build_nmv_cost_table(
  326. x->nmvjointcost,
  327. cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost,
  328. &cm->fc->nmvc, cm->allow_high_precision_mv);
  329. } else {
  330. if (!cpi->sf.use_nonrd_pick_mode || cm->frame_type == KEY_FRAME)
  331. fill_token_costs(x->token_costs, cm->fc->coef_probs);
  332. if (cpi->sf.partition_search_type != VAR_BASED_PARTITION ||
  333. cm->frame_type == KEY_FRAME) {
  334. for (i = 0; i < PARTITION_CONTEXTS; ++i)
  335. vp9_cost_tokens(cpi->partition_cost[i], get_partition_probs(xd, i),
  336. vp9_partition_tree);
  337. }
  338. if (!cpi->sf.use_nonrd_pick_mode || (cm->current_video_frame & 0x07) == 1 ||
  339. cm->frame_type == KEY_FRAME) {
  340. fill_mode_costs(cpi);
  341. if (!frame_is_intra_only(cm)) {
  342. vp9_build_nmv_cost_table(
  343. x->nmvjointcost,
  344. cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost,
  345. &cm->fc->nmvc, cm->allow_high_precision_mv);
  346. vp9_build_inter_mode_cost(cpi);
  347. }
  348. }
  349. }
  350. }
  351. // NOTE: The tables below must be of the same size.
  352. // The functions described below are sampled at the four most significant
  353. // bits of x^2 + 8 / 256.
  354. // Normalized rate:
  355. // This table models the rate for a Laplacian source with given variance
  356. // when quantized with a uniform quantizer with given stepsize. The
  357. // closed form expression is:
  358. // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
  359. // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
  360. // and H(x) is the binary entropy function.
  361. static const int rate_tab_q10[] = {
  362. 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, 4044,
  363. 3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, 3133, 3037,
  364. 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, 2290, 2232, 2179,
  365. 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, 1608, 1530, 1460, 1398,
  366. 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, 911, 864, 821, 781, 745,
  367. 680, 623, 574, 530, 490, 455, 424, 395, 345, 304, 269, 239, 213,
  368. 190, 171, 154, 126, 104, 87, 73, 61, 52, 44, 38, 28, 21,
  369. 16, 12, 10, 8, 6, 5, 3, 2, 1, 1, 1, 0, 0,
  370. };
  371. // Normalized distortion:
  372. // This table models the normalized distortion for a Laplacian source
  373. // with given variance when quantized with a uniform quantizer
  374. // with given stepsize. The closed form expression is:
  375. // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
  376. // where x = qpstep / sqrt(variance).
  377. // Note the actual distortion is Dn * variance.
  378. static const int dist_tab_q10[] = {
  379. 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5,
  380. 6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 21,
  381. 24, 26, 29, 31, 34, 36, 39, 44, 49, 54, 59, 64, 69,
  382. 73, 78, 88, 97, 106, 115, 124, 133, 142, 151, 167, 184, 200,
  383. 215, 231, 245, 260, 274, 301, 327, 351, 375, 397, 418, 439, 458,
  384. 495, 528, 559, 587, 613, 637, 659, 680, 717, 749, 777, 801, 823,
  385. 842, 859, 874, 899, 919, 936, 949, 960, 969, 977, 983, 994, 1001,
  386. 1006, 1010, 1013, 1015, 1017, 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024,
  387. };
  388. static const int xsq_iq_q10[] = {
  389. 0, 4, 8, 12, 16, 20, 24, 28, 32,
  390. 40, 48, 56, 64, 72, 80, 88, 96, 112,
  391. 128, 144, 160, 176, 192, 208, 224, 256, 288,
  392. 320, 352, 384, 416, 448, 480, 544, 608, 672,
  393. 736, 800, 864, 928, 992, 1120, 1248, 1376, 1504,
  394. 1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296,
  395. 3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136,
  396. 7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328,
  397. 16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736,
  398. 36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696,
  399. 81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808,
  400. 180192, 196576, 212960, 229344, 245728,
  401. };
  402. static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) {
  403. const int tmp = (xsq_q10 >> 2) + 8;
  404. const int k = get_msb(tmp) - 3;
  405. const int xq = (k << 3) + ((tmp >> k) & 0x7);
  406. const int one_q10 = 1 << 10;
  407. const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k);
  408. const int b_q10 = one_q10 - a_q10;
  409. *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
  410. *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
  411. }
  412. static void model_rd_norm_vec(int xsq_q10[MAX_MB_PLANE],
  413. int r_q10[MAX_MB_PLANE],
  414. int d_q10[MAX_MB_PLANE]) {
  415. int i;
  416. const int one_q10 = 1 << 10;
  417. for (i = 0; i < MAX_MB_PLANE; ++i) {
  418. const int tmp = (xsq_q10[i] >> 2) + 8;
  419. const int k = get_msb(tmp) - 3;
  420. const int xq = (k << 3) + ((tmp >> k) & 0x7);
  421. const int a_q10 = ((xsq_q10[i] - xsq_iq_q10[xq]) << 10) >> (2 + k);
  422. const int b_q10 = one_q10 - a_q10;
  423. r_q10[i] = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
  424. d_q10[i] = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
  425. }
  426. }
  427. static const uint32_t MAX_XSQ_Q10 = 245727;
  428. void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n_log2,
  429. unsigned int qstep, int *rate,
  430. int64_t *dist) {
  431. // This function models the rate and distortion for a Laplacian
  432. // source with given variance when quantized with a uniform quantizer
  433. // with given stepsize. The closed form expressions are in:
  434. // Hang and Chen, "Source Model for transform video coder and its
  435. // application - Part I: Fundamental Theory", IEEE Trans. Circ.
  436. // Sys. for Video Tech., April 1997.
  437. if (var == 0) {
  438. *rate = 0;
  439. *dist = 0;
  440. } else {
  441. int d_q10, r_q10;
  442. const uint64_t xsq_q10_64 =
  443. (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var;
  444. const int xsq_q10 = (int)VPXMIN(xsq_q10_64, MAX_XSQ_Q10);
  445. model_rd_norm(xsq_q10, &r_q10, &d_q10);
  446. *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - VP9_PROB_COST_SHIFT);
  447. *dist = (var * (int64_t)d_q10 + 512) >> 10;
  448. }
  449. }
  450. // Implements a fixed length vector form of vp9_model_rd_from_var_lapndz where
  451. // vectors are of length MAX_MB_PLANE and all elements of var are non-zero.
  452. void vp9_model_rd_from_var_lapndz_vec(unsigned int var[MAX_MB_PLANE],
  453. unsigned int n_log2[MAX_MB_PLANE],
  454. unsigned int qstep[MAX_MB_PLANE],
  455. int64_t *rate_sum, int64_t *dist_sum) {
  456. int i;
  457. int xsq_q10[MAX_MB_PLANE], d_q10[MAX_MB_PLANE], r_q10[MAX_MB_PLANE];
  458. for (i = 0; i < MAX_MB_PLANE; ++i) {
  459. const uint64_t xsq_q10_64 =
  460. (((uint64_t)qstep[i] * qstep[i] << (n_log2[i] + 10)) + (var[i] >> 1)) /
  461. var[i];
  462. xsq_q10[i] = (int)VPXMIN(xsq_q10_64, MAX_XSQ_Q10);
  463. }
  464. model_rd_norm_vec(xsq_q10, r_q10, d_q10);
  465. for (i = 0; i < MAX_MB_PLANE; ++i) {
  466. int rate =
  467. ROUND_POWER_OF_TWO(r_q10[i] << n_log2[i], 10 - VP9_PROB_COST_SHIFT);
  468. int64_t dist = (var[i] * (int64_t)d_q10[i] + 512) >> 10;
  469. *rate_sum += rate;
  470. *dist_sum += dist;
  471. }
  472. }
  473. void vp9_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size,
  474. const struct macroblockd_plane *pd,
  475. ENTROPY_CONTEXT t_above[16],
  476. ENTROPY_CONTEXT t_left[16]) {
  477. const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
  478. const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
  479. const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
  480. const ENTROPY_CONTEXT *const above = pd->above_context;
  481. const ENTROPY_CONTEXT *const left = pd->left_context;
  482. int i;
  483. switch (tx_size) {
  484. case TX_4X4:
  485. memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
  486. memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
  487. break;
  488. case TX_8X8:
  489. for (i = 0; i < num_4x4_w; i += 2)
  490. t_above[i] = !!*(const uint16_t *)&above[i];
  491. for (i = 0; i < num_4x4_h; i += 2)
  492. t_left[i] = !!*(const uint16_t *)&left[i];
  493. break;
  494. case TX_16X16:
  495. for (i = 0; i < num_4x4_w; i += 4)
  496. t_above[i] = !!*(const uint32_t *)&above[i];
  497. for (i = 0; i < num_4x4_h; i += 4)
  498. t_left[i] = !!*(const uint32_t *)&left[i];
  499. break;
  500. default:
  501. assert(tx_size == TX_32X32);
  502. for (i = 0; i < num_4x4_w; i += 8)
  503. t_above[i] = !!*(const uint64_t *)&above[i];
  504. for (i = 0; i < num_4x4_h; i += 8)
  505. t_left[i] = !!*(const uint64_t *)&left[i];
  506. break;
  507. }
  508. }
  509. void vp9_mv_pred(VP9_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer,
  510. int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) {
  511. int i;
  512. int zero_seen = 0;
  513. int best_index = 0;
  514. int best_sad = INT_MAX;
  515. int this_sad = INT_MAX;
  516. int max_mv = 0;
  517. int near_same_nearest;
  518. uint8_t *src_y_ptr = x->plane[0].src.buf;
  519. uint8_t *ref_y_ptr;
  520. const int num_mv_refs =
  521. MAX_MV_REF_CANDIDATES + (block_size < x->max_partition_size);
  522. MV pred_mv[3];
  523. pred_mv[0] = x->mbmi_ext->ref_mvs[ref_frame][0].as_mv;
  524. pred_mv[1] = x->mbmi_ext->ref_mvs[ref_frame][1].as_mv;
  525. pred_mv[2] = x->pred_mv[ref_frame];
  526. assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0])));
  527. near_same_nearest = x->mbmi_ext->ref_mvs[ref_frame][0].as_int ==
  528. x->mbmi_ext->ref_mvs[ref_frame][1].as_int;
  529. // Get the sad for each candidate reference mv.
  530. for (i = 0; i < num_mv_refs && i < MAX_MV_REF_CANDIDATES + 1; ++i) {
  531. const MV *this_mv = &pred_mv[i];
  532. int fp_row, fp_col;
  533. if (this_mv->row == INT16_MAX || this_mv->col == INT16_MAX) continue;
  534. if (i == 1 && near_same_nearest) continue;
  535. fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3;
  536. fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3;
  537. max_mv = VPXMAX(max_mv, VPXMAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
  538. if (fp_row == 0 && fp_col == 0 && zero_seen) continue;
  539. zero_seen |= (fp_row == 0 && fp_col == 0);
  540. ref_y_ptr = &ref_y_buffer[ref_y_stride * fp_row + fp_col];
  541. // Find sad for current vector.
  542. this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride,
  543. ref_y_ptr, ref_y_stride);
  544. // Note if it is the best so far.
  545. if (this_sad < best_sad) {
  546. best_sad = this_sad;
  547. best_index = i;
  548. }
  549. }
  550. // Note the index of the mv that worked best in the reference list.
  551. x->mv_best_ref_index[ref_frame] = best_index;
  552. x->max_mv_context[ref_frame] = max_mv;
  553. x->pred_mv_sad[ref_frame] = best_sad;
  554. }
  555. void vp9_setup_pred_block(const MACROBLOCKD *xd,
  556. struct buf_2d dst[MAX_MB_PLANE],
  557. const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
  558. const struct scale_factors *scale,
  559. const struct scale_factors *scale_uv) {
  560. int i;
  561. dst[0].buf = src->y_buffer;
  562. dst[0].stride = src->y_stride;
  563. dst[1].buf = src->u_buffer;
  564. dst[2].buf = src->v_buffer;
  565. dst[1].stride = dst[2].stride = src->uv_stride;
  566. for (i = 0; i < MAX_MB_PLANE; ++i) {
  567. setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col,
  568. i ? scale_uv : scale, xd->plane[i].subsampling_x,
  569. xd->plane[i].subsampling_y);
  570. }
  571. }
  572. int vp9_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block,
  573. int stride) {
  574. const int bw = b_width_log2_lookup[plane_bsize];
  575. const int y = 4 * (raster_block >> bw);
  576. const int x = 4 * (raster_block & ((1 << bw) - 1));
  577. return y * stride + x;
  578. }
  579. int16_t *vp9_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block,
  580. int16_t *base) {
  581. const int stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
  582. return base + vp9_raster_block_offset(plane_bsize, raster_block, stride);
  583. }
  584. YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const VP9_COMP *cpi,
  585. int ref_frame) {
  586. const VP9_COMMON *const cm = &cpi->common;
  587. const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1];
  588. const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame);
  589. assert(ref_frame >= LAST_FRAME && ref_frame <= ALTREF_FRAME);
  590. return (scaled_idx != ref_idx && scaled_idx != INVALID_IDX)
  591. ? &cm->buffer_pool->frame_bufs[scaled_idx].buf
  592. : NULL;
  593. }
  594. int vp9_get_switchable_rate(const VP9_COMP *cpi, const MACROBLOCKD *const xd) {
  595. const MODE_INFO *const mi = xd->mi[0];
  596. const int ctx = get_pred_context_switchable_interp(xd);
  597. return SWITCHABLE_INTERP_RATE_FACTOR *
  598. cpi->switchable_interp_costs[ctx][mi->interp_filter];
  599. }
  600. void vp9_set_rd_speed_thresholds(VP9_COMP *cpi) {
  601. int i;
  602. RD_OPT *const rd = &cpi->rd;
  603. SPEED_FEATURES *const sf = &cpi->sf;
  604. // Set baseline threshold values.
  605. for (i = 0; i < MAX_MODES; ++i)
  606. rd->thresh_mult[i] = cpi->oxcf.mode == BEST ? -500 : 0;
  607. if (sf->adaptive_rd_thresh) {
  608. rd->thresh_mult[THR_NEARESTMV] = 300;
  609. rd->thresh_mult[THR_NEARESTG] = 300;
  610. rd->thresh_mult[THR_NEARESTA] = 300;
  611. } else {
  612. rd->thresh_mult[THR_NEARESTMV] = 0;
  613. rd->thresh_mult[THR_NEARESTG] = 0;
  614. rd->thresh_mult[THR_NEARESTA] = 0;
  615. }
  616. rd->thresh_mult[THR_DC] += 1000;
  617. rd->thresh_mult[THR_NEWMV] += 1000;
  618. rd->thresh_mult[THR_NEWA] += 1000;
  619. rd->thresh_mult[THR_NEWG] += 1000;
  620. rd->thresh_mult[THR_NEARMV] += 1000;
  621. rd->thresh_mult[THR_NEARA] += 1000;
  622. rd->thresh_mult[THR_COMP_NEARESTLA] += 1000;
  623. rd->thresh_mult[THR_COMP_NEARESTGA] += 1000;
  624. rd->thresh_mult[THR_TM] += 1000;
  625. rd->thresh_mult[THR_COMP_NEARLA] += 1500;
  626. rd->thresh_mult[THR_COMP_NEWLA] += 2000;
  627. rd->thresh_mult[THR_NEARG] += 1000;
  628. rd->thresh_mult[THR_COMP_NEARGA] += 1500;
  629. rd->thresh_mult[THR_COMP_NEWGA] += 2000;
  630. rd->thresh_mult[THR_ZEROMV] += 2000;
  631. rd->thresh_mult[THR_ZEROG] += 2000;
  632. rd->thresh_mult[THR_ZEROA] += 2000;
  633. rd->thresh_mult[THR_COMP_ZEROLA] += 2500;
  634. rd->thresh_mult[THR_COMP_ZEROGA] += 2500;
  635. rd->thresh_mult[THR_H_PRED] += 2000;
  636. rd->thresh_mult[THR_V_PRED] += 2000;
  637. rd->thresh_mult[THR_D45_PRED] += 2500;
  638. rd->thresh_mult[THR_D135_PRED] += 2500;
  639. rd->thresh_mult[THR_D117_PRED] += 2500;
  640. rd->thresh_mult[THR_D153_PRED] += 2500;
  641. rd->thresh_mult[THR_D207_PRED] += 2500;
  642. rd->thresh_mult[THR_D63_PRED] += 2500;
  643. }
  644. void vp9_set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi) {
  645. static const int thresh_mult[2][MAX_REFS] = {
  646. { 2500, 2500, 2500, 4500, 4500, 2500 },
  647. { 2000, 2000, 2000, 4000, 4000, 2000 }
  648. };
  649. RD_OPT *const rd = &cpi->rd;
  650. const int idx = cpi->oxcf.mode == BEST;
  651. memcpy(rd->thresh_mult_sub8x8, thresh_mult[idx], sizeof(thresh_mult[idx]));
  652. }
  653. void vp9_update_rd_thresh_fact(int (*factor_buf)[MAX_MODES], int rd_thresh,
  654. int bsize, int best_mode_index) {
  655. if (rd_thresh > 0) {
  656. const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES;
  657. int mode;
  658. for (mode = 0; mode < top_mode; ++mode) {
  659. const BLOCK_SIZE min_size = VPXMAX(bsize - 1, BLOCK_4X4);
  660. const BLOCK_SIZE max_size = VPXMIN(bsize + 2, BLOCK_64X64);
  661. BLOCK_SIZE bs;
  662. for (bs = min_size; bs <= max_size; ++bs) {
  663. int *const fact = &factor_buf[bs][mode];
  664. if (mode == best_mode_index) {
  665. *fact -= (*fact >> 4);
  666. } else {
  667. *fact = VPXMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT);
  668. }
  669. }
  670. }
  671. }
  672. }
  673. int vp9_get_intra_cost_penalty(const VP9_COMP *const cpi, BLOCK_SIZE bsize,
  674. int qindex, int qdelta) {
  675. // Reduce the intra cost penalty for small blocks (<=16x16).
  676. int reduction_fac =
  677. (bsize <= BLOCK_16X16) ? ((bsize <= BLOCK_8X8) ? 4 : 2) : 0;
  678. if (cpi->noise_estimate.enabled && cpi->noise_estimate.level == kHigh)
  679. // Don't reduce intra cost penalty if estimated noise level is high.
  680. reduction_fac = 0;
  681. // Always use VPX_BITS_8 as input here because the penalty is applied
  682. // to rate not distortion so we want a consistent penalty for all bit
  683. // depths. If the actual bit depth were passed in here then the value
  684. // retured by vp9_dc_quant() would scale with the bit depth and we would
  685. // then need to apply inverse scaling to correct back to a bit depth
  686. // independent rate penalty.
  687. return (20 * vp9_dc_quant(qindex, qdelta, VPX_BITS_8)) >> reduction_fac;
  688. }